# T885

# TAIT ELECTRONICS LTD

| Address:        | 558 Wairakei Road,<br>Christchurch,<br>New Zealand. |  |
|-----------------|-----------------------------------------------------|--|
| Postal Address: | PO Box 1645,<br>Christchurch,<br>New Zealand.       |  |
|                 |                                                     |  |

| Telegrams & Cables: | 'Taitronics'                            |
|---------------------|-----------------------------------------|
| Telex:              | NZ 4926                                 |
| Telephone:          | 358 3399                                |
| Fax:                | (64) (3) 358 3603, 358 3636 or 358 9299 |

#### T885 Receiver

UHF FM 800-960MHz

#### (M885-00)

**Issue** A

#### TECHNICAL INFORMATION

Any enquiries regarding this Manual or the equipment it describes should be addressed in the first instance to your nearest approved Tait Dealer or Service Centre. Further technical assistance may be obtained from the Product Support Group, Tait Electronics Ltd, at the above address.

#### UPDATING EQUIPMENT AND SERVICE MANUALS

In the interests of improving performance, reliability or servicing, Tait Electronics Ltd reserve the right to update their equipment and/or Service Manuals without prior notice.

# SCOPE OF MANUAL

This Manual contains general, technical and servicing information on the T885 receiver.

[F10]

# Ordering Tait Service Manuals

Service Manuals should be ordered from your nearest Tait Branch or approved Dealer. When ordering, quote the Tait Internal Part Number (IPN) and, where applicable, the version.

#### Date Of Issue

IPN M885-00 T885 Service Manual (All Versions)

Provisional Issue published October 1990 Issue A published January 1992

#### AUSTRALIA

Tait Electronics (Aust) Pty Ltd 3/2 Jenner Street P.O. Box 679 Nundah Brisbane Queensland 4012 Australia Phone: (07) 266-3399 Toll Free: (008) 07-7112 Fax: (07) 266-7559

#### HONG KONG

Tait Electronics Ltd Chung Ying Building Suite 203 20-20a Connaught Road West Hong Kong Phone: (852) 517-0000 Fax: (852) 517-1818

#### SINGAPORE

Tait Electronics (Far East) Pte Ltd 1 Newton Road 01-29 Goldhill Plaza Singapore 1130 Phone: (65) 253-5777 Fax: (65) 251-7778 Telex: RS53535 "TAITFE"

#### UNITED KINGDOM

í :

Tait Mobile Radio Ltd Ermine Business Park Ermine Road Huntingdon Cambridgeshire PE18 6YA United Kingdom Phone: (0480) 52255 Fax: (0480) 411996

#### USA

Tait Electronics (USA) Inc 9434 Old Katy Road Suite 110 Houston Texas 77055 USA Phone: (713) 984-8684 Toll Free: 800 222-1255 Fax: (713) 468-6944

# CONTENTS

T885

|          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1           | Page       |
|----------|-----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------------|------------|
| SECTION  | <b>1</b> GENERAL INFORMATION                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | 0          |
| 1.1      | Introduction                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | 1.1        |
| 1.2      | Specifications                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,      |             | 1.2        |
|          | 1.2.1 Introduction                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |             | 1.2        |
| :        | 1.2.2 General<br>1.2.3 RF Section                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | 1.2        |
| 1. J. C. | 1.2.4 Audio Section                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |             | 1.3        |
| 1.3      | Versions                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1           | 1.4        |
|          |                                                                 | n in the second se |        |             | 14 - A.    |
| SECTION  | 2 CIRCUIT OPERATION                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | ۰.         |
| 2.1      | Introduction                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1           | 2.1        |
| 2.2      | Receiver Front End                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1 .         | 2.1        |
| 2.3      | Mixer                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | ·           | 2.2        |
| 2.4      | IF Circuitry                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1 .         | 2.2        |
| 2.5      | Noise Mute (Squelch)                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | :      |             | 2.2        |
| 2.6      | Carrier Mute                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | 1           | 2.3        |
| 2.7      | Audio Processor                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | :           | 2.3        |
| 2.8      | Power Supply And Regulator                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | 2.4        |
| 2.9      | Synthesised Local Oscillator                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | 2.4        |
| 2.10     | Received Signal Strength Indicator (I                           | RSSI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | :<br>·      | 2.5        |
| SECTION  | 3 INTRODUCTION TO SERVICING                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •      |             | i.         |
| 3.1      | General                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | :           | 3.1        |
|          | 3.1.1 Notes                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | 3.1        |
|          | 3.1.2 Technical Instructions (TI's)                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        |             | 3.1        |
| 3.2      | Mechanical<br>3.2.1 Pozidriv Recess Head Screws                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T.     |             | 3.1        |
|          |                                                                 | S'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |             | 3.1        |
| 3.3      | Component Replacement                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | i.     |             | 3.1        |
|          | 3.3.1 Leaded Components<br>3.3.1.1 Desoldering Iron Method      | - 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · ·    | н<br>1      | 3.1<br>3.1 |
|          | 3.3.1.2 Component Cutting Method<br>3.3.2 Surface Mount Devices | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |             | 3.2        |
|          | J.J.Z Surface would Devices                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | ·           | 3.2        |
| SECTION  | 4 INITIAL TUNING & ADJUSTMEN1                                   | C ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |             |            |
| 4.1      | Introduction                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | ·<br>·<br>· | ,<br>, 1   |
|          |                                                                 | ·<br>:<br>·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |             | 4.1        |
| 4.2      | Channel Programming                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a in t |             | 4.1        |
| 4.3      | DIP Switch Codes For Channel Addre                              | esses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :      |             | 4.1        |

.....

~ ;

r ·

- - -

í.\_\_\_

ł

1

| 4.4  | Audio Processor Links                                                                               | 4.2               |
|------|-----------------------------------------------------------------------------------------------------|-------------------|
| 4.5  | Test Equipment Set-Up                                                                               | 4.2               |
| 4.6  | Synthesiser Alignment                                                                               | 4.3               |
| 4.7  | Alignment Of Receiver Front End & IF                                                                | 4.3               |
| 4.8  | Alignment Of Ultra-Wide Band Receivers (30kHz IF BW)                                                | 4.4               |
| 4.9  | Noise Mute Adjustment                                                                               | 4.5               |
|      | Audio Processor<br>4.10.1 Line Amplifier Output<br>4.10.2 Monitor Amplifier Output (Speaker Output) | 4.5<br>4.5<br>4.6 |
| 4.11 | RSSI                                                                                                | 4.6               |
| 4.12 | Carrier Level Mute                                                                                  | 4.6               |

# SECTION 5 FUNCTIONAL TESTS

| 5.1 | Current Consumption                                       | 5.1 |
|-----|-----------------------------------------------------------|-----|
| 5.2 | Sensitivity                                               | 5.1 |
| 5.3 | Switching Band (Multichannel Only)                        | 5.1 |
| 5.4 | Audio Distortion                                          | 5.1 |
| 5.5 | Ultimate Signal To Noise Ratio                            | 5.2 |
| 5.6 | De-emphasised Audio Frequency Response                    | 5.2 |
| 5.7 | Noise Mute (If Linked In)                                 | 5.3 |
| 5.8 | RSSI (If Fitted)                                          | 5,3 |
| 5.9 | Carrier Level Mute (Carrier Mute Linked In & RSSI Fitted) | 5.3 |

# SECTION 6 FAULT FINDING

| Visual | Checks                                                                                          | 6.1                                                                                                                                                                             |
|--------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Comp   | onent Checks                                                                                    | 6.1                                                                                                                                                                             |
| Using  | CAD Circuit Diagrams                                                                            | 6.1                                                                                                                                                                             |
| Findin | ng Components On The Main PCB                                                                   | 6.1                                                                                                                                                                             |
| DC CI  | hecks                                                                                           | 6.2                                                                                                                                                                             |
| 6.5.1  | Power Rails                                                                                     | 6.2                                                                                                                                                                             |
| 6.5.2  | VCO Locking                                                                                     | 6.2                                                                                                                                                                             |
| 6.5.3  | Mute Operation                                                                                  | 6.2                                                                                                                                                                             |
| RF Ch  | necks                                                                                           | 6.2                                                                                                                                                                             |
| 6.6.1  | VCO Frequency                                                                                   | 6.2                                                                                                                                                                             |
|        |                                                                                                 | 6.2                                                                                                                                                                             |
| 6.6.3  | TCXO Stability                                                                                  | 6.3                                                                                                                                                                             |
| 6.6.4  | IF Distortion                                                                                   | 6.3                                                                                                                                                                             |
|        | Comp<br>Using<br>Findir<br>DC Cl<br>6.5.1<br>6.5.2<br>6.5.3<br>RF Cl<br>6.6.1<br>6.6.2<br>6.6.3 | <ul> <li>6.5.2 VCO Locking</li> <li>6.5.3 Mute Operation</li> <li>RF Checks</li> <li>6.6.1 VCO Frequency</li> <li>6.6.2 RF Sensitivity</li> <li>6.6.3 TCXO Stability</li> </ul> |

|      |        |                                  |                                                                                                           | •              |                |             |                          |
|------|--------|----------------------------------|-----------------------------------------------------------------------------------------------------------|----------------|----------------|-------------|--------------------------|
|      | 6.7    | Regula                           | tor Fault Finding Chart                                                                                   |                | и<br>1<br>1    | ·<br>·<br>· | 6.5                      |
| 1    | 6.8    | Synthes                          | iser Fault Finding Chart                                                                                  | S              | . :            |             | 6.6                      |
| . 1  | 6.9    | Noise N                          | lute Fault Finding Chart                                                                                  |                |                |             | 6.8                      |
|      | 6.10   | Carrier                          | Mute Fault Finding Cha                                                                                    | rt             |                |             | 6.9                      |
|      | 6.11   | Receive                          | er Fault Finding Charts                                                                                   |                | r i<br>r       | n<br>Na s   | 6.10                     |
| ,    | 6.12   | Audio F                          | ault Finding Chart                                                                                        |                |                |             | 6.11                     |
|      |        |                                  |                                                                                                           |                | а<br>а         |             |                          |
| SECT | TION 7 | 7 INST                           | ALLATION                                                                                                  | , "<br>1       |                |             |                          |
|      | 7.1    | Rack M                           | ounting                                                                                                   |                |                |             | 7.1                      |
|      | 7.2    | Rack W                           | iring                                                                                                     |                | * .            | · .         | 7.2                      |
|      | 7.3    | Power                            | Supply                                                                                                    |                |                | •<br>•      | 7.2                      |
|      | 7.4    | Reverse                          | e Polarity Protection                                                                                     |                |                |             | 7.2                      |
|      |        |                                  |                                                                                                           |                |                |             |                          |
| SEC1 | TON 8  | <u>s sys</u> t                   | EM CONFIGURATIONS                                                                                         |                |                |             |                          |
|      | 8.1    | Genera                           | <b>.</b>                                                                                                  |                |                |             | 8.1                      |
|      | 8.2    |                                  | lectable Features                                                                                         |                |                |             | 8.1                      |
|      |        | 8.2.1<br>8.2.2<br>8.2.3<br>8.2.4 | Flat Or De-emphasised<br>Mute Relay Control<br>Mute Selection<br>Receiver Disable                         | Response       |                |             | 8.1<br>8.1<br>8.1<br>8.1 |
| ·    |        | 8.2.5<br>8.2.6                   | CTCSS Configuration<br>300Hz High Pass Filter                                                             |                |                |             | 8.1<br>8.1               |
|      | 8.3    | Talk Th                          | rough Repeater                                                                                            |                |                | :           | 8.2                      |
|      | 8.4    | Line Co<br>8.4.1                 | ontrolled Base Station (W<br>Transmitter Tail Timer                                                       | ithout Talk Ti | hrough)        | ۰<br>۲      | 8.2<br>8.3               |
|      | 8.5    | DC Lin                           | e Keying                                                                                                  |                | •              |             | 8.4                      |
|      | :      |                                  |                                                                                                           |                | . U            | ·<br>· · ·  | :                        |
| SEC1 | TON 9  | STAN                             | NDARD OPTIONS                                                                                             | 6 - 1<br>1     |                | ,<br>,      |                          |
| 1    | 9.1    | Genera                           | l                                                                                                         |                |                |             | 9.1                      |
|      | 9.2    | тсхо                             | :                                                                                                         |                | н.<br>1917 - Н | · · ·       | 9.1                      |
| · ;  | 9.3    | RSSI                             |                                                                                                           | :              | · .            |             | 9.1                      |
| ; ,  | 9.4    | Multich                          | annel                                                                                                     |                |                |             | 9.2                      |
| . /  |        | 9.4.1<br>9.4.2                   | Remote<br>Internal Selection                                                                              |                | ı              |             | 9.2<br>9.2               |
|      | 9.5    | CTCSS                            |                                                                                                           |                | 1<br>1         |             | 9.2                      |
|      |        | 9.5.1<br>9.5.2<br>9.5.3<br>9.5.4 | Single Channel - Single<br>Multichannel - Separate<br>Single Channel - Multi-1<br>Audio Processor Linking | Tones<br>tone  | CTCSS          |             | 9.2<br>9.3<br>9.3<br>9.4 |

<u>T885</u>

T885

# SECTION 10 PARTS LIST

Refer to Page 10.2 for index.

# LIST OF ILLUSTRATIONS

| Figure 1.  | High Level Block Diagram                        | 2.1 |
|------------|-------------------------------------------------|-----|
| Figure 2.  | Front End, IF & Mute Block Diagram              | 2.1 |
| Figure 3.  | Audio Processor Block Diagram                   | 2.3 |
| Figure 4.  | Power Supply & Regulator Block Diagram          | 2.4 |
| Figure 5.  | Synthesiser Block Diagram                       | 2.4 |
| Figure 6.  | RSSI Block Diagram                              | 2.6 |
| Figure 7.  | Channel DIP Switch Setting                      | 4.1 |
| Figure 8.  | Test Equipment Set-Up                           | 4.2 |
| Figure 9.  | De-emphasised Audio Frequency Response          | 5.2 |
| Figure 10. | RF Test Cable                                   | 6.2 |
| Figure 11. | IF Swept Response                               | 6.4 |
| Figure 12. |                                                 | 6.4 |
| Figure 13. | -                                               | 7.1 |
|            | T885 Chassis Connectors                         | 7.1 |
| Figure 15. |                                                 | 7.2 |
| Figure 16. |                                                 | 8.2 |
| Figure 17. | Basic Configuration                             | 8.2 |
| Figure 18. |                                                 | 8.3 |
| Figure 19. |                                                 | 8.3 |
| Figure 20. | DC Loop Keying With Common Earth                | 8.4 |
| Figure 21. | Isolated Constant Current Loop Current Detector | 8.5 |
| Figure 22. | Isolated Loop Current Switch                    | 8.5 |
| Figure 23. |                                                 | 8.5 |
| Figure 24. | RSSI Voltage vs Signal Strength                 | 9.1 |
| Figure 25. | T800-02 Mounting Details                        | 9.2 |
|            | CTCSS Wiring Detail                             | 9.3 |
| Figure 27. | Multi-Tone Control with T310-05 or T310-10      | 9.3 |

# DIAGRAMS

| 1.  | EPROM PCB Layout - Top Side                  |          |          |
|-----|----------------------------------------------|----------|----------|
| 2.  | EPROM PCB Layout - Bottom Side               |          |          |
| 3.  | VCO PCB Layout - Top Side                    |          |          |
| 4.  | VCO PCB Layout - Bottom Side                 |          |          |
|     | T885 PCB Grid Reference Index                |          |          |
| 5.  | T885 PCB Layout - Top Side                   | `        | Fold-out |
| 6.  | T885 PCB Layout - Bottom Side                |          |          |
| 7.  | T885 PCB Test Points & Options - Top Side    | Y        | Fold-out |
| 8.  | T885 PCB Test Points & Options - Bottom Side | ,        |          |
| 9.  | EPROM Circuit Diagram                        | C656     | Fold-out |
| 10. | VCO Circuit Diagram                          | C/12     |          |
| 11. | Audio Processor Circuit Diagram              | C718/2   | Fold-out |
| 12. | Receiver Circuit Diagram                     | C718/4 / | rola-out |
| 13. | Regulator Circuit Diagram                    | C718/3   | Fold-out |
| 14. | Synthesiser Circuit Diagram                  | C718/1 ′ |          |
| 15. | RSSI PCB Layout - Bottom Side                |          |          |
| 16. | RSSI Circuit Diagram                         | C636     | Fold-out |

7

- - 2

## SECTION 1 GENERAL INFORMATION

#### 1.1 INTRODUCTION

The T885 is a high performance FM base station receiver designed for single or multichannel operation in the 800 to 960MHz frequency range.

The receiver is a dual conversion superhet with a synthesised local oscillator. The first IF is 45MHz, allowing exceptionally high spurious signal rejection to be achieved in the receiver front end. The second IF section (455kHz) combines amplitude limiting and detection within a single integrated circuit. It also drives a noise level detector for gating the audio output. RSSI is also used to drive a carrier mute for audio output gating.

The audio section delivers a minimum of +10dBm to a 600 ohm balanced output, and 1W to a local monitor speaker. A flat or de-emphasised audio response is link selectable.

The synthesiser frequency is programmed via an EPROM which is attached to a separate plug-in memory board. A DIP switch on the memory PCB allows fast single channel selection from a multichannel programmed EPROM, but for true multichannel capability the EPROM must be addressed separately via an additional D-range plug at the rear of the set.

All components except those on the VCO and memory boards are mounted on a single PCB. This is secured to a die-cast chassis which is divided into compartments to individually shield each section of circuitry. Access to both sides of the main PCB is obtained by removing each of the two chassis lids. There is provision within the chassis to mount small option PCB's.

The front panel controls include gate sensitivity, line level, monitor volume and a mute disable switch. This switch disables the mute (squelch) signal to the monitor amplifier as an aid to servicing.

# **1.2 SPECIFICATIONS**

### 1.2.1 INTRODUCTION

The performance figures given are minimum figures, unless otherwise indicated, for equipment tuned with the maximum switching band and operating at standard room temperature (+22°C to +28°C).

Where applicable, the test methods used to obtain the following performance figures are those described in the EIA specification. However, there are several parameters for which performance according to the CEPT specification is given.

Details of test methods and the conditions which apply for Type Approval testing in all countries can be obtained from Tait Electronics Ltd.

### 1.2.2 GENERAL

Frequency Range

.. 800-960MHz

.. 12.5kHz

.. 6MHz

.. 1

.. 8

.. 128

.. dual conversion superheterodyne

Type

Frequency Increment

Switching Range

Number Of Channels:

Standard Optional Internally Selectable

Supply Voltage:

Operating Voltage Standard Test Voltage Polarity Polarity Protection

Supply Current: Standby

Full Audio

Input Impedance

Operating Temperature Range

Frequency Stability: Standard Version Very High Stability Option

Signal Strength Indicator (optional)

Dimensions:

Height Width Length .. 400mA

.. crowbar diode

.. 10.8 to 16V DC

.. negative earth only

.. 800mA

.. 13.8V DC

.. 50 ohms

.. -30°C to +60°C

.. <u>+</u>1.5ppm, -30°C to +60°C .. <u>+</u>1ppm, 0°C to +60°C

.. -115dBm to -75dBm, 0 to 5V at 10dB/V

.. 191mm .. 60mm .. 322mm

.. 2.2kg

Weight

# 1.2.3 RF SECTION

| IF Amplifiers:<br>Frequencies                  | 45MHz and 455                               | 2H7                      |
|------------------------------------------------|---------------------------------------------|--------------------------|
| Bandwidths-                                    |                                             |                          |
| Narrow Band (NB)                               | 7.5kHz                                      |                          |
| Wide Band (WB)                                 | 15kHz                                       |                          |
| Ultra-Wide Band (UWB)                          | 30kHz                                       |                          |
| Sensitivity:                                   |                                             |                          |
| Single Channel (NB & WB)                       | 117dBm                                      |                          |
| Single Channel (UWB)                           | 114dBm                                      |                          |
| Bandspread (12dB Sinad) (NB & WB               |                                             |                          |
| Bandspread (12dB Sinad) (UWB)                  | 112dBm                                      |                          |
| Circal Maine To Maine Deting                   |                                             |                          |
| Signal+Noise To Noise Ratio:                   | 24 JD                                       |                          |
| RF Level -107dBm<br>RF Level -83dBm (NB)       | 24dB<br>45dB (CEPT) ty                      | nical                    |
| RF Level -57dBm (WB)                           | 50dB (EIA) typic                            |                          |
| RF Level -57dBm (UWB)                          | 45dB (EIA) typic                            |                          |
|                                                |                                             |                          |
| Selectivity:                                   | · · · · · · · · · · · · · · · · · · ·       |                          |
| Narrow Band (±12.5kHz)                         | 80dB (CEPT) ty                              | pical                    |
| Wide Band ( <u>+</u> 25kHz)<br>Ultra-Wide Band | 85dB<br>90dB                                |                          |
| Offra-wide Band                                | •• 90ub                                     |                          |
| Offset Selectivity (Canada only)               | 20dB                                        |                          |
|                                                |                                             |                          |
| Spurious Response Attenuation                  | 100dB                                       |                          |
| Intermodulation Response Attenuation:          |                                             |                          |
| Narrow Band                                    | 80dB (2 & 4 cha                             | nnels) typical           |
| Wide Band                                      | 80dB                                        | mons, typical            |
| Ultra-Wide Band                                | 80dB                                        |                          |
|                                                |                                             |                          |
| Blocking                                       | 100dB                                       |                          |
| Co-channel Rejection                           | 6dB                                         |                          |
|                                                |                                             |                          |
| Amplitude Characteristic                       | 3dB                                         | ;                        |
|                                                |                                             |                          |
| Spurious Emissions:                            |                                             |                          |
| Conducted                                      | 90dBm to 4GH                                |                          |
| Radiated                                       | - 57dBm to 1GH<br>- 47dBm to 4GH            | 1.1                      |
|                                                |                                             |                          |
|                                                |                                             |                          |
| 1.2.4 AUDIO SECTION                            |                                             |                          |
| Outputs Anallable                              | line and menitor                            |                          |
| Outputs Available                              | line and monitor                            |                          |
| Frequency Response                             | flat or de-emph                             | asised (link selectable) |
| Flat Response (15kHz IF BW):                   |                                             |                          |
| Bandwidth                                      | 67 to 3400Hz                                |                          |
| Response                                       |                                             | of output level at lkHz  |
|                                                | ······                                      |                          |
|                                                | $(1,1) \in \{1,\dots,n\} \in \{1,\dots,n\}$ |                          |
|                                                |                                             |                          |

# **T885** General Information

че ---| | | |

1----

. ا

• •••• •

<u>حم ا</u>

----

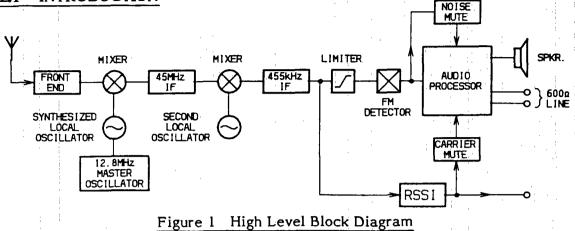
[----]

1

, ,

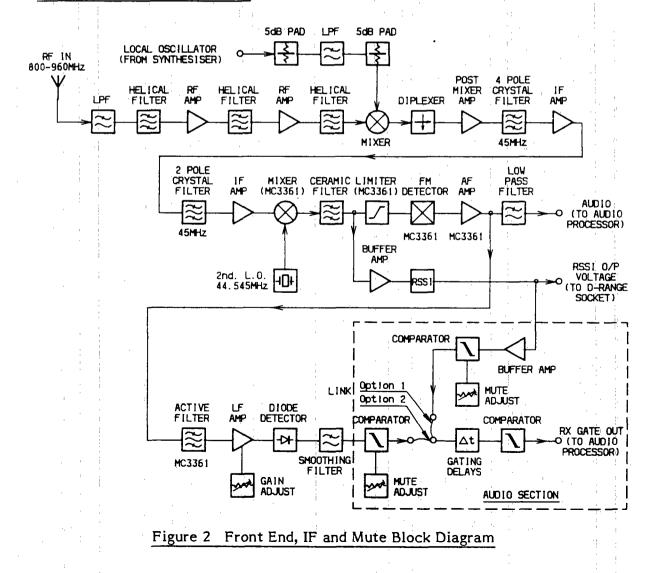
-----

---


| CTCSS Band-<br>Bandwidth 67 to 260Hz<br>Response within +1, -2dB of output level at 100Hz | asis |
|-------------------------------------------------------------------------------------------|------|
| Response within +1, -2dB of output level at 100Hz                                         | asis |
| • • •                                                                                     | asis |
| Speech Band-                                                                              | asis |
| Bandwidth 300 to 3400Hz                                                                   | asis |
| Response within +1, -3dB of a 6dB/octave de-emph<br>characteristic (ref. 1kHz)            |      |
| Line Output:                                                                              |      |
| Power adjustable to +10dBm                                                                |      |
| Load Impedance 600 ohms                                                                   |      |
| Distortion 2%                                                                             |      |
| Monitor Output:                                                                           |      |
| Power 1W                                                                                  |      |
| Speaker Impedance 3.5 ohms                                                                |      |
| Distortion 3%                                                                             |      |
| Mute Operation (Gate)                                                                     |      |
| Systems Available noise mute and carrier mute                                             |      |
| Noise Mute:                                                                               |      |
| Operating Range 6-20dB sinad                                                              |      |
| Hysteresis 1.5 to 6dB                                                                     |      |
| Threshold adjustable to -105dBm                                                           |      |
| Opening Time 20ms                                                                         |      |
| Closing Time 50ms                                                                         |      |
| Carrier Mute (Optional):                                                                  |      |
| Operating Range115 to -70dBm                                                              |      |
| Hysteresis 2 to 10dB                                                                      |      |
| Opening Time 5ms                                                                          |      |
| Closing Time 50ms                                                                         |      |

1.3 VERSIONS

| Description         |    | T885 Versions |    |    |    |    |    |    |    |          |
|---------------------|----|---------------|----|----|----|----|----|----|----|----------|
|                     | 10 | 12            | 14 | 15 | 17 | 20 | 22 | 24 | 25 | 27       |
| 800-880MHz          | ++ | ++            | ++ | ++ | ++ | [  |    |    |    | <u> </u> |
| 850-960MHz          |    |               |    |    |    | ++ | ++ | ++ | ++ | ++       |
| 30kHz IF Bandwidth  |    |               | ++ |    |    |    |    | ++ |    |          |
| 15kHz IF Bandwidth  | ++ | ++            |    |    |    | ++ | ++ |    |    |          |
| 7.5kHz IF Bandwidth |    |               |    | ++ | ++ |    |    |    | ++ | ++       |
| 1.5ppm TCXO         | ++ | <u></u>       | ++ | ++ |    | ++ |    | ++ | ++ |          |
| 1.0ppm TCXO         |    | ++            |    |    | ++ |    | ++ |    |    | ++       |


# SECTION 2 CIRCUIT OPERATION





The T885 receiver consists of a number of distinct stages: the front end, mixer, synthesised local oscillator, IF, audio processor, mute (squelch), regulator circuits and received signal strength indicator (RSSI). These stages are clearly identifiable in Figure 1. Refer to the Circuit Diagrams at the rear of the Manual for further detail.

# 2.2 RECEIVER FRONT END



Page 2.1

The incoming signal from the N-type antenna socket is fed through a 7-pole, low pass filter with a cut frequency of approximately 1.1GHz. This low loss filter (typically less than 0.5dB over 800-960MHz) provides excellent immunity to interference from high frequency signals.

The signal is then further filtered, using a high performance helical resonator (#H1) which provides exceptional image rejection. This is followed by two stages of amplification (Q300, Q303) and filtering (#H2, (#H3) before being presented to the mixer. The gain per stage is 5dB, while the loss per helical is 2dB.

Each sub-block within the front end has been designed with 50 ohm terminations for ease of testing and fault finding. The overall gain from the antenna socket to the mixer input varies from 0-4dB.

# 2.3 MIXER (Refer to Figure 2.)

IC300 is a low level mixer requiring a local oscillator (LO) drive level of +7dBm (nominal). The voltage controlled oscillator (VCO) generates a level of +20dBm (typical) and this is fed to the mixer via two 5dB attenuator pads and an LPF. A diplexer terminates the IF port of the mixer in a good 50 ohms, thus preventing unnecessary intermodulation distortion.

## 2.4 IF CIRCUITRY (Refer to Figure 2.)

Losses in the mixer are made up for in a tuned, common gate, post mixer amplifier (Q304). Several stages of amplification and filtering are employed in the IF circuitry. The first crystal filter is a 4-pole device (&XF300) which is matched into 50 ohms on both its input and output ports. This stage is followed by a common base amplifier (Q305) whose output is matched into a 2-pole crystal filter (&XF301). The signal is then amplified using a high gain MOSFET amplifier (Q306) before being mixed down to 455kHz with the second local oscillator (44.545MHz).

The 455kHz signal is filtered using a 6-pole ceramic filter (&XF302) before being limited and detected. Q307 provides a buffered 455kHz output for use with the optional RF level detector (RSSI).

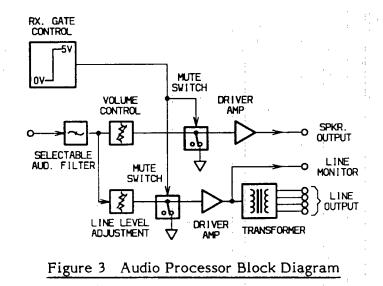
The second IF mixer, limiter and detector is in a 16-pin IC (IC301). Quadrature detection is employed, using L321, and the recovered audio on pin 9 of IC301 is typically 1V p-p for 60% system deviation.

# 2.5 NOISE MUTE (SQUELCH) (Refer to Figure 2.)

The noise mute operates on the detected noise outside the audio bandwidth. An operational amplifier in IC301 is used as an active band pass filter centred on 70kHz to filter out audio components. The noise spectrum is then further amplified in a variable gain, two stage amplifier (Q308 & Q309) with additional filtering. The noise is then rectified (D300) and filtered to produce a DC voltage proportional to the noise amplitude. The lowest average DC voltage corresponds to a high RF signal strength and the highest DC voltage corresponds to no signal at the RF input.

The rectified noise voltage is compared with a threshold voltage set up on RV100, the front panel mute potentiometer. Hysteresis is introduced by the feedback resistor (R106) to prevent the received message from being chopped when the average noise voltage is close to the threshold. R111 and R110 determine the mute opening and closing times. The mute control signal at pin 7 of IC100 is used to disable the speaker and line audio outputs. The speaker output can be separately enabled for test purposes by operating the front panel mute disable switch, SW100.

The mute control line is available on pad 101 (Rx gate out) for control of external circuitry. A high (9V) on pad 101 indicates that the audio is disabled and a low (0V) indicates that a signal above the mute threshold level is being received.

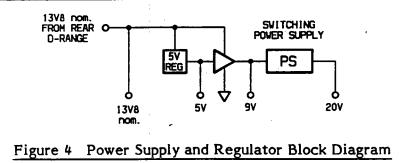

The audio can also be disabled using the "Rx-disable" inputs, pads 100 or 113, having connected the "Rx-disable" link between pins 1 & 2 of PL100. An adjustable time delay (RV101) is provided on these lines. In order to disable the audio, either pad must be pulled to 0V.

The red front panel LED (D102) indicates the status of the mute circuit. When a signal above the mute threshold is received, the LED is illuminated. A relay with undedicated contacts is provided (RL100) for transmitter keying or other functions and this can be operated from the mute line by linking PL102.

### **2.6 CARRIER MUTE** (Refer to Figure 2.)

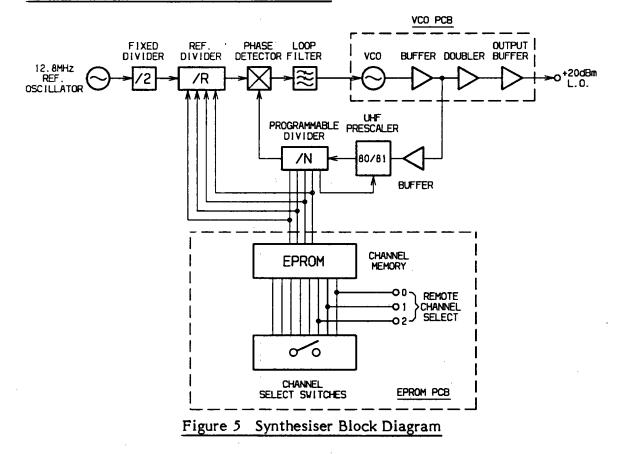
A high level carrier mute facility is also available when the RSSI option is fitted. The RSSI (refer to Section 2.10) provides a DC voltage proportional to the signal strength. This voltage is compared with a preset level, set up on RV104, and may be linked into the mute timing circuit using PL104. PL104 selects either the noise mute or the carrier mute. From this point both mute circuits operate in the same manner, using common circuitry.

#### 2.7 AUDIO PROCESSOR




The recovered audio on pin 9 of IC301 is processed in a third order elliptic active filter to give the required response. Linking (PL101 & PL103) is available to give either a flat or de-emphasised audio response, with de-emphasis giving a 6dB/octave roll off. The output of IC101 is split to provide separate paths for the speaker and line outputs.

The speaker volume is set using the front panel volume knob (RV103) and the line level is set using the recessed potentiometer (RV102). The signals are passed to audio drive amplifiers IC102 and IC103. Under muted conditions the inputs of these amplifiers are shunted to ground via transistors Q105 and Q106 respectively.


The audio output of IC102 has a DC component which is removed by C122, and this then drives a speaker directly. The output of IC103 is fed into a line transformer to provide a balanced 2-wire or 4-wire, 600 ohm output.

#### 2.8 POWER SUPPLY AND REGULATOR



The T885 is designed to operate off a 10.8-16V DC supply (13.8V nominal). A 5.3V regulator (IC202) runs directly off the 13.8V rail, driving much of the synthesiser circuitry. This is used as the reference for a DC amplifier (IC201, Q200 & Q201) which provides a medium current capability 9V supply. A switching power supply, based on Q202 and Q203, runs off the 9V supply and provides a low current capability +20V supply. This is used to drive the synthesiser loop filter (IC4), giving a VCO control voltage of up to 20V. The 13.8V supply drives both output audio amplifiers without additional regulation.

# 2.9 SYNTHESISED LOCAL OSCILLATOR



The synthesiser employs a phase-locked loop (PLL) to lock a VCO to a given reference frequency.

A master oscillator at 12.8MHz (=IC2) is buffered, divided by two and then divided down to 12.5kHz within the synthesiser IC (IC3). A buffered output of the VCO is fed to a programmable divider, comprising a UHF prescaler (IC1) and a divider internal to IC3. These two signals are applied to the phase detectors in IC3.

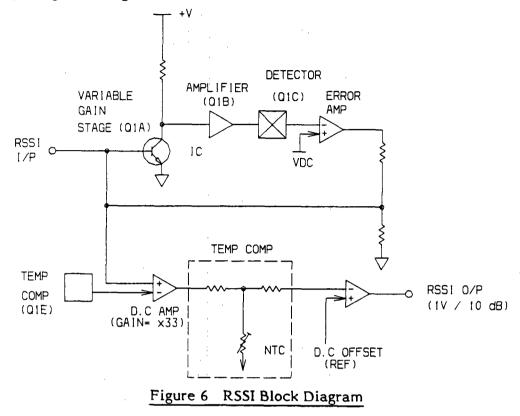
A digital phase detector (PDB) provides rapid coarse tuning of the VCO until the phase error is within the range of the high gain sample and hold detector (PDA). The phase detector outputs are passed through an active loop filter (IC4a) which produces a DC voltage between 0 and 20V to tune the VCO. This VCO control line is further filtered to attenuate noise and spurs. As the control line voltage increases, the VCO frequency also increases.

The division ratio of the programmable divider is stored within EPROM memory (IC1). Up to 128 frequencies can be stored within the memory and are addressable using the internal DIP switches. Three of the address lines are also available for external frequency control via an extra D-range connector at the rear of the chassis. A change of state of any of these three lines (CH SEL 0-2) commences a programming cycle during which the frequency data in the EPROM is down-loaded to a divider within IC3. 32 bits of data are loaded in eight 4-bit words.

The VCO transistor (Q1) operates in a common source configuration and uses a low loss transmission line resonator (&TL1). The transmission line is used in a two port configuration with varicaps positioned at one end. The VCO control voltage from the loop filter (IC4a) is applied to the varicaps (D1 & D2) to facilitate tuning. The VCO output is coupled into a cascode amplifier stage (Q2 & Q3) which gives a +10dBm (nom.) output. This output is used to drive the divider buffer for the UHF prescaler which is a divide by 80/81, giving 12.5kHz channel increments, and is also used to drive a doubler (Q4). The final frequency is then applied to a further amplifier stage (Q5) via a 3dB pad. The output level from the VCO is +20dBm. The doubler and output stages Q4 & Q5 incorporate two notch filters to reduce  $\frac{1}{2}$ f.

The VCO is modulated by superimposing the audio signal onto the control voltage and by phase modulating the reference signal.

The VCO frequency spans from either 755-835MHz or 805-915MHz according to version. The VCO is tuned to 45MHz below the desired receive frequency to produce a 45MHz IF signal on the output of the mixer.


#### 2.10 RECEIVED SIGNAL STRENGTH INDICATOR (RSSI)

(Refer to Figure 6 and the Circuit Diagram at the rear of this Manual.)

The RSSI option PCB plugs directly into the main PCB (support circuitry being fitted as standard). It is fitted to the T885 whenever receiver signal strength monitoring is required, e.g. trunking or voting. Its function is to provide a DC voltage proportional to the signal level at the receiver input.

The variable gain stage (Q1A) is a common emitter amplifier with its emitter grounded and the AGC control loop voltage applied to its base. Since the AGC loop will maintain a constant signal level at the collector, the gain of Q1 must be proportional to the incoming 455kHz signal level. The gain of Q1 is linearly proportional to its collector current which itself is exponentially related to the base-emitter voltage. Thus there is a logarithmic relationship between the baseemitter voltage and the gain. The circuit therefore produces a feedback voltage, and an output voltage, logarithmically related to the RF input signal.

The AGC loop is followed by a DC amplifier which provides level shifting, temperature compensation and gain to give a nominal 1V/10dB at the RSSI output. RV301 on the main PCB is used to set the RSSI voltage to a fixed value at a given RF input signal strength.



# T885 Introduction To Servicing

#### SECTION 3 INTRODUCTION TO SERVICING

#### 3.1 GENERAL

#### 3.1.1 NOTES

If further information is required about the T885 or this Manual, it may be obtained from Tait Electronics Ltd or accredited agents. When requesting this information, please quote either the equipment serial number or works order number (found on a label at the back of the set). In the case of the Service Manual quote the Tait Internal Part Number (IPN) and Issue, and for Circuit Diagrams quote the 'Title' and 'Issue'.

# CAUTION: CMOS DEVICES

This equipment contains CMOS Devices which are susceptible to damage from static charges. Care when handling these devices is essential. For correct handling procedures refer to manufacturers' data books covering CMOS devices, e.g. Philips Data Handbook Covering CMOS Devices; Motorola CMOS Data Book Section 5 (Handling Procedures), etc.

# 3.1.2 TECHNICAL INSTRUCTIONS (TI's)

From time to time TI's are issued by Tait Electronics Engineering Division. These TI's may be used to update equipment or information, or to meet specific operational requirements.

#### 3.2 MECHANICAL

#### 3.2.1 POZIDRIV RECESS HEAD SCREWS

Pozidriv recess head screws are the preferred standard on all Tait manufactured equipment. The very real advantages of this type of screw will not be realised unless the correct screwdrivers are used by servicing personnel.

#### 3.3 COMPONENT REPLACEMENT

#### 3.3.1 LEADED COMPONENTS

Whenever components are removed from or fitted to the PCB, care must be taken to avoid damage to the track. The two satisfactory methods of removing components from PTH PCB's are detailed below.

Note: The first method requires the use of a desoldering station, e.g. Philips SBC 314 or Pace MBT-100E.

#### 3.3.1.1 Desoldering Iron Method

Place the tip over the lead and, as the solder starts to melt, move the tip in a circular motion.

Start the suction and continue the movement until 3 or 4 circles have been completed.

Remove the tip while continuing suction to ensure that all solder is removed from the joint, then stop the suction.

Before pulling the lead out, ensure it is not stuck to the plating.

If the lead is still not free, resolder the joint and try again.

Note: The desoldering iron does not usually have enough heat to desolder leads from the ground plane. Additional heat may be applied by holding a soldering iron on the tip of the desoldering iron (this may require some additional help).

#### 3.3.1.2 Component Cutting Method

Cut the leads on the component side of the PCB.

Heat the solder joint sufficiently to allow easy removal of the lead by drawing it out from the component side: do not use undue force.

Fill the hole with solder and then clear with solderwick.

#### 3.3.2 SURFACE MOUNT DEVICES

<u>CAUTION:</u> Surface mount devices (SMD's) require special storage, handling, removal and replacement techniques.

This equipment should be serviced only by an approved Tait Dealer or Service Centre equipped with the necessary facilities.

Repairs attempted with incorrect equipment or by untrained personel may result in permanent damage. If in doubt, contact Tait Electronics Ltd or your nearest Tait Branch or Subsidiary.

# T885 Initial Tuning & Adjustment

#### SECTION 4 INITIAL TUNING & ADJUSTMENT

#### 4.1 INTRODUCTION

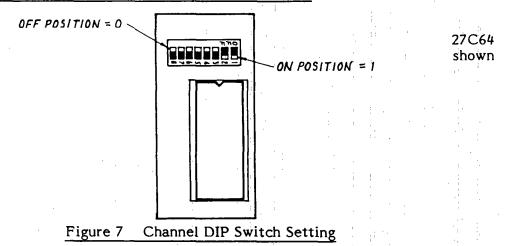
The full tuning and adjustment procedure is as follows:

- channel programming
- channel selection
- selecting required audio links
- synthesiser alignment
- receiver front end and IF alignment
- noise mute adjustment
- setting line output level
- setting monitor output level
- setting up the RSSI
- carrier level mute adjustment.

These operations are described more fully in the following Sections.

### 4.2 CHANNEL PROGRAMMING

Up to 128 channel frequencies can be stored in the EPROM memory (IC1). Each channel can be addressed using the bank of 8 switches (SW1). The most significant bit of this switch is set according to the type of EPROM fitted:


ON = 27C16 OFF = 27C64

Up to 8 channels may be addressed externally when the optional extra rear D-range connector is fitted.

Programming is accomplished by using an IBM\* PC, a PROM programmer and the PGM800 software package. For a full description of the programming procedure, refer to the T800 Programming Handbook.

\*IBM is a registered trademark of International Business Machines.

## 4.3 DIP SWITCH CODES FOR CHANNEL ADDRESSES



The PGM800 software used to programme the EPROM will present the user with a DIP switch code for each channel address. For example, channel 124 will be assigned a switch code of X0000011, in which case the switches should be set as shown in Figure 7, i.e. **0**0000011.

Note 1: For remote multichannel applications using the T800-07 multichannel memory PCB, the DIP switch is not used and should have the first 3 least significant bits (1-3) in the off position. The next 4 bits (4-7) should be on, while the most significant bit (8) is selected according to the EPROM used (refer to Section 4.2). This will allow the existing CHSEL lines to be used to select up to 8 channels.

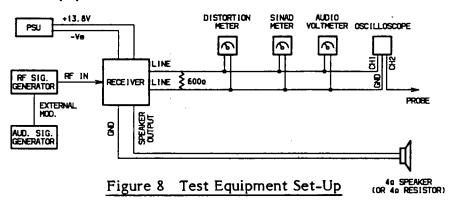
It is possible to address blocks of 8 channels throughout the 128 channel EPROM capacity by switching bits 4 to 7 on the DIP switch.

Note 2: Alternatively, all 128 channels may be remotely addressed on the T800-07, but bits 1-7 of the DIP switch should be in the off position. In this case it will be necessary to drill a hole to route the 7 channel select lines from the synthesiser compartment to the D-range connector.

Later models may have an access slot between these two compartments.

#### 4.4 AUDIO PROCESSOR LINKS

The links available for various circuit block options are listed by function as follows (refer to the Test Points & Options Diagrams at the rear of this Manual):


| Piug PL100        | 1-2<br>2-3               | Rx disable link<br>not connected                           |
|-------------------|--------------------------|------------------------------------------------------------|
| Plug PL101        | 1-2<br>2-3               | flat response<br>de-emphasised response                    |
| Plug PL102        | 1-2<br>2-3               | relay link<br>not connected                                |
| Plug PL103        | 1-2<br>2-3               | de-emphasised response<br>flat response                    |
| Plug PL104        | 1-2<br>2-3               | noise mute<br>carrier mute                                 |
| Plug PL105*<br>or | 1-2<br>2-3<br>3-4<br>4-5 | bypass high pass filter                                    |
|                   |                          | 300Hz high pass filter in circuit                          |
|                   |                          | audio input via audio 2 or 3                               |
| Plug PL106        | 1-2<br>2-3               | audio input via audio 2 pad<br>audio input via audio 3 pad |

\*Refer to Section 9.5.4 for further details.

The required options should be selected before alignment of the receiver is attempted.

#### 4.5 TEST EQUIPMENT SET-UP

Set up the test equipment as shown below:



#### 4.6 SYNTHESISER ALIGNMENT

1. Ensure that the EPROM (IC1) has been programmed with the required frequencies using PGM800 software.

#### 2. Single Channel:

Select a channel on the EPROM PCB DIP switch.

#### Multichannel:

Select the middle channel via the EPROM PCB DIP switch.

If there is no channel near the middle of the required switching range, it may be necessary to programme an additional channel specifically for alignment purposes.

3. Connect a high impedance voltmeter to the long lead of L1 in the VCO (this measures the synthesiser loop voltage).

#### 4. Single Channel:

Tune VCO trimmer C6 for a synthesiser loop voltage of 7V.

#### Multichannel:

Tune VCO trimmer C6 for a synthesiser loop voltage of 7V on the middle channel.

All channels should lie within the upper and lower limits of 10V and 3V respectively.

Do not attempt to programme channels with a greater frequency separation than the specified switching range of 6MHz.

5. The TCXO (=IC2) output frequency should be trimmed when the IF is tuned - refer to Section 4.7.

#### 4.7 ALIGNMENT OF RECEIVER FRONT END AND IF

- Note 1: In this and following Sections deviation settings are given first for wide band sets, followed by settings in brackets for narrow band [] and ultrawide band () sets.
- Note 2: Refer to Section 4.8 for the alignment procedure for ultra-wide band receivers.

Align the synthesiser as instructed in Section 4.6. For multichannel operation the receiver should be aligned on a frequency in the middle of the required band.

Inject a strong on-channel RF signal with 3kHz deviation [1.5kHz] at 1kHz into the antenna socket and adjust helicals #H1, #H2 and #H3 to give best sinad.

Continually decrease the RF level to maintain 12dB sinad.

Roughly tune IF coils L313/L314/L315/L316/L317/L318 for best sinad, and then tune L321 for maximum audio output.

While maintaining a low level unmodulated RF input to the receiver, loosely couple into the first IF an additional high level signal at 45MHz - a beat note will be heard.

Trim the synthesiser TCXO (=IC2) for zero beat.

While maintaining the low level RF input to the receiver, loosely couple into the second IF an additional high level signal at 455kHz - a beat note will be heard.

Tune L320 for zero beat.

Readjust the front end helicals #H1, #H2 and #H3 to give best sinad.

Change the RF signal level to -75dBm and modulate with 3kHz deviation [1.5kHz] at 1kHz.

Connect an oscilloscope probe to SK300/3 (RSSI 455kHz input) and connect plugs PL101 and PL103 to give a flat audio response (refer to Section 4.4).

Readjust IF coils L313/L314/L315/L316/L317/L318 to give a maximum amplitude response on the oscilloscope with minimal amplitude modulation.

Further adjust these coils (except L313), along with L321, for minimum audio distortion, ensuring that the 455kHz level (on the oscilloscope) does not fall significantly.

Check that the distortion reading is less than 2%.

Reconnect plugs PL101 and PL103 to give a de-emphasised audio response (if required) and reduce the RF level until 12dB sinad is reached. The receiver sensitivity should be better than -117dBm, assuming that the audio levels are not being overdriven (refer to Section 4.10).

#### **4.8** ALIGNMENT OF ULTRA-WIDE BAND RECEIVERS (30kHz IF BW)

The 30kHz IF requires a different alignment procedure to achieve minimum distortion.

Inject a strong on-channel RF signal with 4kHz deviation at 1kHz into the antenna socket and adjust helicals #H1, #H2 and #H3 to give best sinad.

Continually decrease the RF level to maintain 12dB sinad.

Roughly tune IF coils L313/L314/L315/L316/L317/L318 for best sinad, and then tune L321 for maximum audio output.

While maintaining a low level unmodulated RF input to the receiver, loosely couple into the first IF an additional high level signal at 45MHz - a beat note will be heard.

Trim the synthesiser TCXO (=IC2) for zero beat.

While maintaining a low level RF input to the receiver, loosely couple into the second IF an additional high level signal at 455kHz - a beat note will be heard.

Tune L320 for zero beat.

#### T885 Initial Tuning & Adjustment

Readjust front end helicals #H1, #H2 and #H3 to give best sinad.

Apply an on-channel RF signal modulated at 10Hz with 30kHz deviation at an amplitude of -80dBm.

Connect the modulating 10Hz audio signal to the "X" input of an oscilloscope and apply the 455kHz RSSI input (SK300/3) via a suitable RF probe to the "Y" input; also connect an audio voltmeter to SK300/3 with a suitable RF probe.

Note: The "X" input should be DC coupled.

The oscilloscope will display the amplitude response of the IF filters.

Readjust IF coils L313/L314/L315/L316/L317/L318 to give a maximum amplitude rounded top trace on the oscilloscope, then fine adjust to give a maximum voltage on the audio voltmeter, ensuring that the shape of the IF trace remains rounded and without excessive ripple.

Change the RF signal to give 4kHz deviation at 1kHz at a level of -60dBm.

Set the audio links to give a flat response.

Adjust L321 for minimum audio distortion.

Vary the modulating frequency between 300Hz and 8kHz. The audio distortion should be better than 3%.

#### 4.9 NOISE MUTE ADJUSTMENT

Connect pins 1 & 2 of PL104 to enable the noise mute.

Align the receiver as instructed in Sections 4.6 and 4.7 (or 4.8).

Set the RF level to -105dBm with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Set RV100 (gate sensitivity) fully anticlockwise.

Adjust RV300 to close the mute (if necessary turn off the RF signal and then turn it on again).

Rotate RV300 anticlockwise until the mute just opens.

Once the mute has been set up as described above, RV100 (gate sensitivity) on the front panel may be adjusted for the required opening sinad.

## 4.10 AUDIO PROCESSOR

4.10.1 LINE AMPLIFIER OUTPUT

Apply an on-channel signal from the RF generator at a level of -70dBm with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Adjust the front panel line level pot. (RV102) to give an output of +10dBm on the 600 ohm line.

Check for any clipping or distortion on the oscilloscope.

Set the line level to the required output level.

#### 4.10.2 MONITOR AMPLIFIER OUTPUT (SPEAKER OUTPUT)

Adjust the front panel monitor volume control (RV103) to give an output of 2V rms into a 3.5 ohm resistive load.

Check for any clipping or distortion on the oscilloscope.

Switch to a 3.5 ohm speaker load and adjust RV103 to the required level.

# 4.11 T800-04 RSSI

The RSSI is an optional PCB giving signal strength monitoring and high level mute facilities to the basic receiver.

Ensure the T800-04 PCB is fitted in the main board sockets (SK300 & SK301).

Align the receiver as instructed in Sections 4.6 and 4.7 (or 4.8).

Apply an on-channel signal from the RF generator at a level of -110dBm with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Adjust RV301 to give 2.0V RSSI output on pin 5 on the rear D-range connector when measured with a high impedance DMM.

# 4.12 CARRIER LEVEL MUTE

Connect pins 2 and 3 of PL104 to enable the carrier mute and disable the noise mute.

Apply an on-channel signal from the RF generator at the required mute opening level with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Adjust the carrier mute pot. (RV104) to close the mute (if necessary, momentarily turn off the RF), then slowly adjust it until the mute just opens. The mute should now open at this preset level.

----

# PGM800 DIP SWITCH CODES

|          |                      |          |                      |                                       | 1 1                  |
|----------|----------------------|----------|----------------------|---------------------------------------|----------------------|
| Channel  | DIP Code             | Channel  | DIP Code             | Channel                               | DIP Code             |
|          | V1111111             | 51       | X1001101             | 101                                   | X0011011             |
| 1        | X1111111             | 52       | X1001100             | 101                                   | X0011010             |
| 2        | X111110<br>X1111101  | 53       | X1001011             | 102                                   | X0011001             |
| 3        | X1111100             | 54       | X1001010             | 103                                   | X0011000             |
| 4        |                      | 55       | X1001001             | 104                                   | X0010111             |
| 5        | X1111011             |          |                      |                                       | X00101110            |
| 6        | X1111010             | 56       | X1001000<br>X1000111 | 106                                   | X00101101            |
| 7        | X1111001             | 57       |                      | 107<br>108                            | X0010100             |
| 8        | X1111000<br>X1110111 | 58       | X1000110             | 108                                   | X0010101             |
| 9        | X1110111             | 59       | X1000101             | 110                                   | X0010010             |
| 10       | X1110110             | 60       | X1000100             | 111                                   | X0010001             |
| 11       | X1110100             | 61       | X1000011             | 111                                   | X0010001             |
| 12       | X1110011             | 62       | X1000010             | 112                                   | X000000              |
| 13       | X1110011<br>X1110010 | 63       | X1000001             | 113                                   | X0001110             |
| 14       | X1110010<br>X1110001 | 64<br>65 | X1000000             | 115                                   | X0001101             |
| 15       | X1110000             | 66       | X0111111             |                                       | X0001101<br>X0001100 |
| 16       | X1101111             | 67       | X0111110             | 116                                   | X0001100<br>X0001011 |
| 17       | X1101110             | 68       | X0111101             | 117<br>118                            | X0001011<br>X0001010 |
| 18       | X11011101            | 69       | X0111100             | 118                                   | X0001010             |
| 19       | X1101100             | 70       | X0111011<br>X0111010 |                                       | X0001001             |
| 20<br>21 | X1101001             | 70       |                      | 120<br>121                            | X0001000<br>X0000111 |
| 21       | X1101011<br>X1101010 | 71<br>72 | X0111001             | · · · · · · · · · · · · · · · · · · · |                      |
| 22       | X1101001             | 73       | X0111000             | 122                                   | X0000110             |
| 23       | X1101000             | 73       | X0110111             | 123                                   | X0000101             |
| 24       | X1101000             | 74       | X0110110<br>X0110101 | 124                                   | X0000100             |
| 23       | X1100111<br>X1100110 | 76       | X0110101<br>X0110100 | 125                                   | X0000011             |
| 20       | X1100101             | 70       | X01100011            | 126                                   | X0000010             |
| 28       | X1100100             | 78       | X0110011             | 127                                   | X0000001             |
| 28       | X1100100<br>X1100011 | 79       | X0110010             | 128                                   | X0000000             |
| 30       | X1100010             | 80       | X0110001<br>X0110000 |                                       | 14 - La              |
| 31       | X1100001             | 81       | X0101111             | 1                                     |                      |
| 32       | X1100000             | 82       | X0101110             |                                       |                      |
| 33       | X1011111             | 83       | X0101101             |                                       |                      |
| 34       | X1011110             | 84       | X0101100             |                                       |                      |
| 35       | X1011101             | 85       | X0101011             |                                       |                      |
| 36       | X1011100             | 86       | X0101010             |                                       |                      |
| 37       | X1011011             | 87       | X0101001             | :                                     |                      |
| 38       | X1011010             | 88       | X0101000             | 1                                     |                      |
| 39       | X1011001             | 89       | X0100111             |                                       | 1 · · ·              |
| 40       | X1011000             | 90       | X0100110             | 100 A. 100 A. 100 A.                  |                      |
| 41       | X1010111             | 91       | X0100101             |                                       | ;                    |
| 42       | X1010110             | 92       | X0100100             |                                       |                      |
| 43       | X1010101             | 93       | X0100011             | '                                     |                      |
| 44       | X1010100             | 94       | X0100010             |                                       |                      |
| 45       | X1010011             | 95       | X0100001             |                                       |                      |
| 46       | X1010010             | 96       | X0100000             |                                       |                      |
| 47       | X1010001             | 97       | X0011111             |                                       |                      |
| 48       | X1010000             | .98      | X0011110             |                                       |                      |
| 49       | X1001111             | 99       | X0011101             |                                       |                      |
| 50       | X1001110             | 100      | X0011100             |                                       |                      |
|          |                      | 4.       |                      |                                       |                      |

0 = off 1 = on

----чтан 1 г. 1 г. 

## SECTION 5 FUNCTIONAL TESTS

The following test procedures will confirm that the T885 has been tuned and adjusted correctly and is fully operational.

Note: In this and following Sections deviation settings are given first for wide band sets, followed by settings in brackets for narrow band [] and ultrawide band () sets.

### 5.1 CURRENT CONSUMPTION

Connect the T885 to a 13.8V power supply.

Rotate the front panel mute pot. anticlockwise until the mute LED is extinguished.

Turn the front panel "Monitor Mute" switch to the on position.

Check that the current in the 13.8V power cable is less than 400mA.

Rotate the mute pot. clockwise until the mute LED is lit.

Rotate the line level adjuster and the volume control to give maximum outputs.

Check that the current is less than 800mA.

#### 5.2 SENSITIVITY

Apply an on-channel signal from the RF generator with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Adjust the RF level to give 12dB audio sinad.

Check that the sensitivity is better than -117dBm (UWB -114dBm).

#### 5.3 SWITCHING BAND (MULTICHANNEL ONLY)

Apply an on-channel signal from the RF generator at various frequencies within the 6MHz front end bandwidth, corresponding to pre-programmed channels.

Measure the sensitivity at each frequency as described in Section 5.2.

Ensure that the sensitivity is better than -115dBm (UWB -112dBm) across the whole band.

#### 5.4 AUDIO DISTORTION

The level of distortion measured at the line output gives a good indication of the accuracy of the IF alignment.

Apply an accurate on-channel signal from the RF generator at a level of -70dBm with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Adjust the front panel line level control (RV102) to give +10dBm into 600 ohms.

Check that the distortion is approximately 1% THD.

Note: For a de-emphasised response, the distortion should always be better than 2%.

Adjust the front panel monitor volume control (RV103) to give 2V rms into a 3.5 ohm resistive load.

Check that the distortion at the monitor output is better than 3% THD.

# 5.5 ULTIMATE SIGNAL TO NOISE RATIO

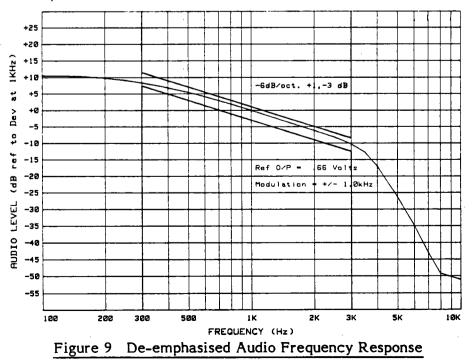
Apply a signal from the RF generator at a level of -57dBm with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Select de-emphasis on the links provided in the audio processor (refer to Section 4.4), and link pins 2 & 3 of PL105 to include the 300Hz filter.

Adjust RV102 (line level) to provide +10dBm output.

Switch off the modulation, checking that the residual noise is lower than -39dBm [-34dBm] (-34dBm) at the line output (this corresponds to S/N of 49dB [44dB] (44dB) and is in accordance with EIA measurement conditions).

Note 1: The measurement can be made without the 300Hz high pass filter but will give a result which is 10dB worse.


Note 2: A small percentage of sets will give results 2dB worse than these figures.

## 5.6 DE-EMPHASISED AUDIO FREQUENCY RESPONSE

Set RV102 (line level) to provide 0dBm output at 1kHz modulating frequency.

Sweep the modulating frequency, checking that the response closely follows that shown in Figure 9 - the limits should not be exceeded.

Note: The curve shown is for wide band sets. The narrow band response is similar, but rolls off earlier at 2.5kHz.



# 5.7 NOISE MUTE (IF LINKED IN)

Rotate the front panel mute pot. (RV100) fully anticlockwise.

Apply an on-channel signal from the RF generator at a level of -110dBm with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Increase the RF level in 1dB steps, checking that the mute opens for an RF input level of approximately -105dBm.

Turn the RF off and check that the mute closes.

Rotate the mute pot. clockwise and check that the mute opens.

Reset the mute pot. to give the required opening sinad.

#### 5.8 RSSI (IF FITTED)

Apply an on-channel signal from the RF generator at a level of -110dBm with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Using a high impedance DMM, check that the RSSI output voltage on pin 5 of the rear D-range connector is 2V (nominal).

Vary the RF level in 5dB steps and check that the RSSI output voltage changes at a rate of approximately 0.5V/5dB over the range of -115dBm to -70dBm.

#### 5.9 CARRIER LEVEL MUTE (CARRIER MUTE LINKED IN & RSSI FITTED)

Apply an on-channel signal from the RF generator at a level of -120dBm with 3kHz deviation [1.5kHz] (4kHz) at 1kHz.

Increase the RF level in 2dB steps and check that the mute opens at an RF level which corresponds with the preset level on RV104 (i.e. between -115dBm and -70dBm).

-----. . · · · ·

.

#### SECTION 6 FAULT FINDING

#### 6.1 VISUAL CHECKS

Remove the covers from the T885 and inspect the PCB for damaged or broken components, paying particular attention to the surface mounted devices (SMD's).

Check for defective solder joints. If repair or replacement is considered necessary, refer to Sections 3.3.1 and 3.3.2.

#### 6.2 COMPONENT CHECKS

If a transistor is suspected of faulty operation, an indication of its performance can be assessed by measuring the forward and reverse resistance of the junctions. First make sure that the transistor is not shunted by some circuit resistance (unless the device is completely unsoldered). A 20k ohm/V or better multimeter should be used for taking the measurements, using only the medium or low resistance ranges.

The collector current drawn by multi-junction transistors is a further guide to their performance.

If an IC is suspect, the most reliable check is to measure the DC operating voltages. Due to the catastrophic nature of most IC failures, the pin voltages will usually be markedly different from the recommended values in the presence of a fault. The recommended values can be obtained from either the Circuit Diagram or the component data catalogue.

# 6.3 USING CAD CIRCUIT DIAGRAMS

Reading a CAD Circuit Diagram is similar to reading a road map, in that both have an alphanumeric border. The Circuit Diagrams in this Manual use letters to represent the horizontal axis, and numbers for the vertical axis. These Circuit Diagram "grid references" are useful in following a circuit that is spread over two or more sheets.

When a line representing part of the circuitry is discontinued, a reference will be given at the end of the line to indicate where the rest of the circuitry is located. The first digit refers to the sheet number (printed on the bottom right hand corner of the CAD diagram) and the last two characters refer to the location on that sheet of the continuation of the circuit (e.g. 1-D4).

If more than one line is represented (indicated by a double thickness line), a dot with a reference label will follow the route each individual line represents.

# 6.4 FINDING COMPONENTS ON THE MAIN PCB

To assist in locating components and labelled pads on the PCB layouts and Circuit Diagrams, a component grid reference index has been provided. This index lists the components and pads in alphabetical order, along with the appropriate alphanumeric grid references.

The first digit in the Circuit Diagram reference is the sheet number, and the last two characters give the location of the component on that sheet.

The first digit in the PCB layout reference is a "1" or "2", indicating the top or bottom side layout respectively, and the last two characters give the location of the component on that diagram.

#### **T885** Fault Finding

The grid reference index is located between Diagrams 4 & 5.

The locations of commonly used test pads and options connectors are also shown on the Test Points & Options Diagrams (Diagrams 7 & 8).

# 6.5 DC CHECKS

#### 6.5.1 POWER RAILS

Refer to Diagrams 7 & 8 for test point locations, and to the regulator fault finding chart (Section 6.7) for fault diagnosis.

Check the 9V (TP2) and 13.8V (TP1) power supply test points in the audio compartment with a DMM.

Check the 20V (TP3) regulator output at the test point in the regulator compartment.

Check the 5V (TP4) regulator output at the test point in the regulator compartment and on pin 4 of IC301.

#### 6.5.2 VCO LOCKING

Using a DMM, monitor the VCO control voltage at the long lead of L1 (located near the electrolytic capacitor on the VCO PCB).

If the synthesiser is locked and the VCO aligned, the voltage at this point should be between 3 and 10V.

If the VCO is not locked, refer to the synthesiser fault finding chart (Section 6.8).

#### 6.5.3 MUTE OPERATION

The front panel LED will show the status of the mute circuitry. It will be lit when a signal is received above the threshold level. It should always be possible to open the mute gate by rotating the mute potentiometer fully clockwise, or by enabling the monitor with the front panel switch.

e 5.

If the mute fails to operate correctly, refer to the mute fault finding charts (Sections 6.9 & 6.10).

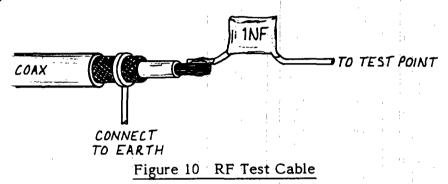
#### 6.6 RF CHECKS

#### 6.6.1 VCO FREQUENCY

Check that the VCO is phase locked (refer to Section 6.5.2).

Connect a frequency counter (level +10dBm) to the VCO input to the mixer (IC300).

Monitor the local oscillator frequency and check that it is 45MHz below the required receive frequency.


Refer to the synthesiser fault finding chart (Section 6.8) for further information.

#### 6.6.2 RF SENSITIVITY

Ensure that the VCO is on the correct frequency and the receiver correctly aligned.

Check that the sensitivity into the front end is -117dBm (UWB -114dBm) (typical).

If the sensitivity is poor, the fault can be traced by measuring the sensitivity into successive circuit blocks. Prepare a test cable by connecting a lnF capacitor to the end of a length of coax cable as shown in Figure 10.



Note: Before using the test cable, ensure the coax braid is connected to an earth point on the PCB.

Using the RF test cable, apply a modulated 45MHz signal to the test points in the IF section, or an on-channel RF signal to the front end test breaks.

Check that the sensitivity at each test point is within 2dB of the levels shown on the Circuit Diagram (NB & WB only).

Poor sensitivity indicates a fault in one of the circuit blocks following the test point.

Note: Poor sensitivity into the mixer can be caused by lack of drive level from the VCO (the drive level should be >+7dBm).

Refer to the receiver fault finding charts (Section 6.11) for further information.

#### 6.6.3 TCXO STABILITY

While maintaining a low level unmodulated RF input to the receiver, loosely couple into the first IF an additional high level signal at 45MHz – a constant low frequency beat note should be heard.

Tap the TCXO with a finger and replace it if the beat note permanently changes.

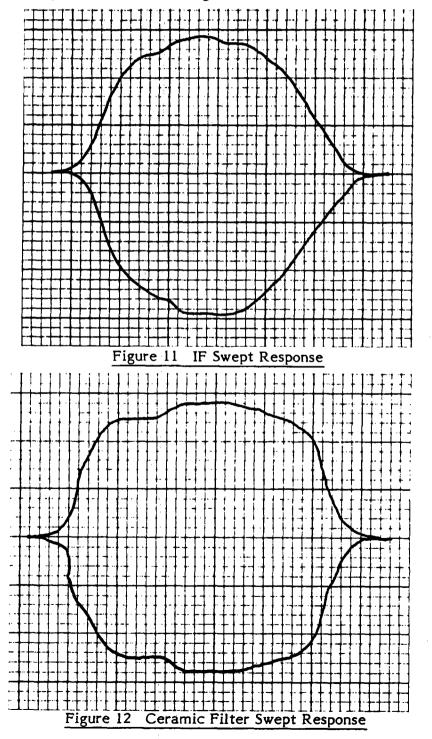
#### 6.6.4 IF DISTORTION

If after careful IF alignment (Section 4.7 or 4.8) the audio distortion is still high, the IF should be swept to investigate the bandpass response.

Apply an on channel RF signal modulated at 10Hz with 12kHz [6kHz] (25kHz) deviation at an amplitude of -80dBm.

# T885 Fault Finding

Connect the modulating 10Hz audio signal to the "X" input of an oscilloscope and observe the 455kHz IF at SK300/3 via a suitable RF probe on the "Y" input.


Note: The X input should be DC coupled.

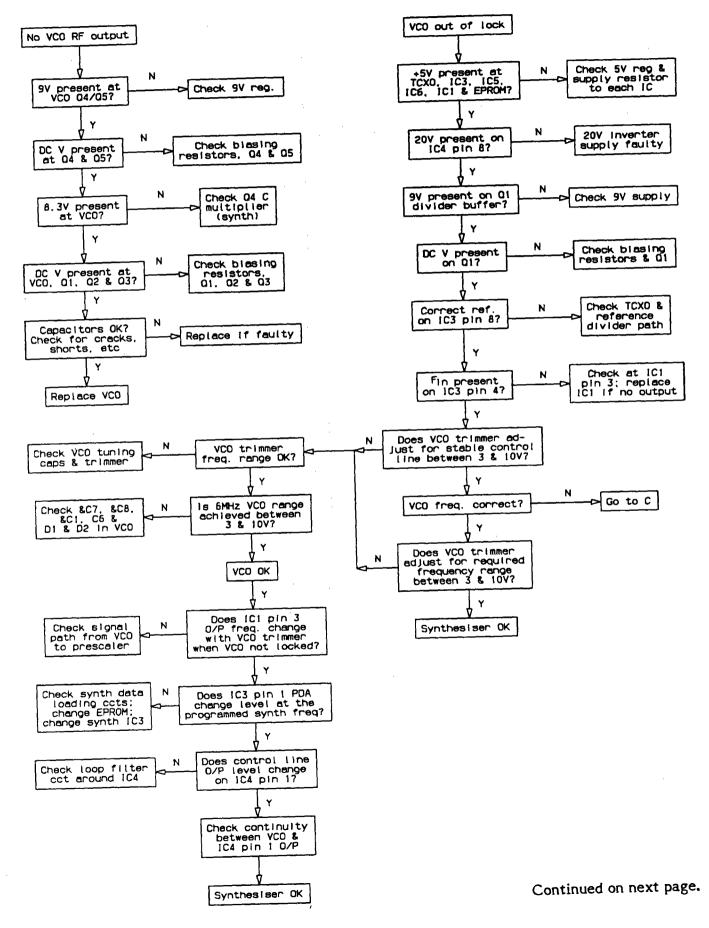
Check that the swept response has a rounded top and no sharp nonlinearities (refer to Figure 11).

Increase the RF level to -50dBm; the trace will now show the shape of the 455kHz ceramic filter (&XF302).

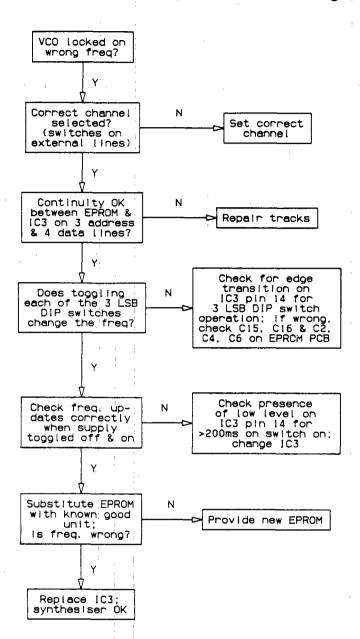
Check that the response has no sharp non-linearities.

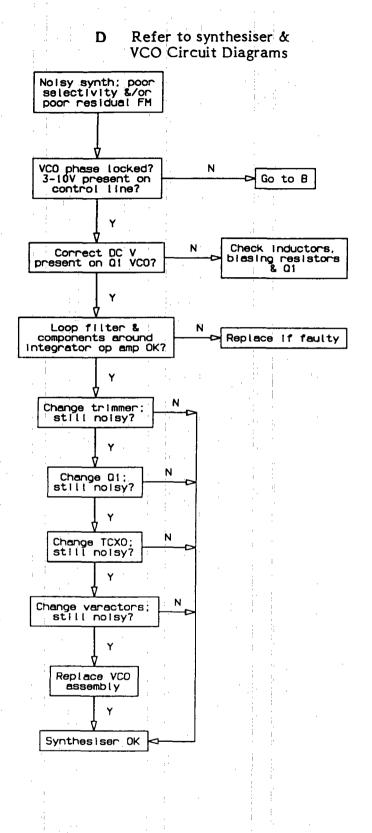
If sharp non-linearities do occur, replace the filter and sweep to confirm a satisfactory solution (refer to Figure 12).




# 6.7 REGULATOR FAULT FINDING CHART

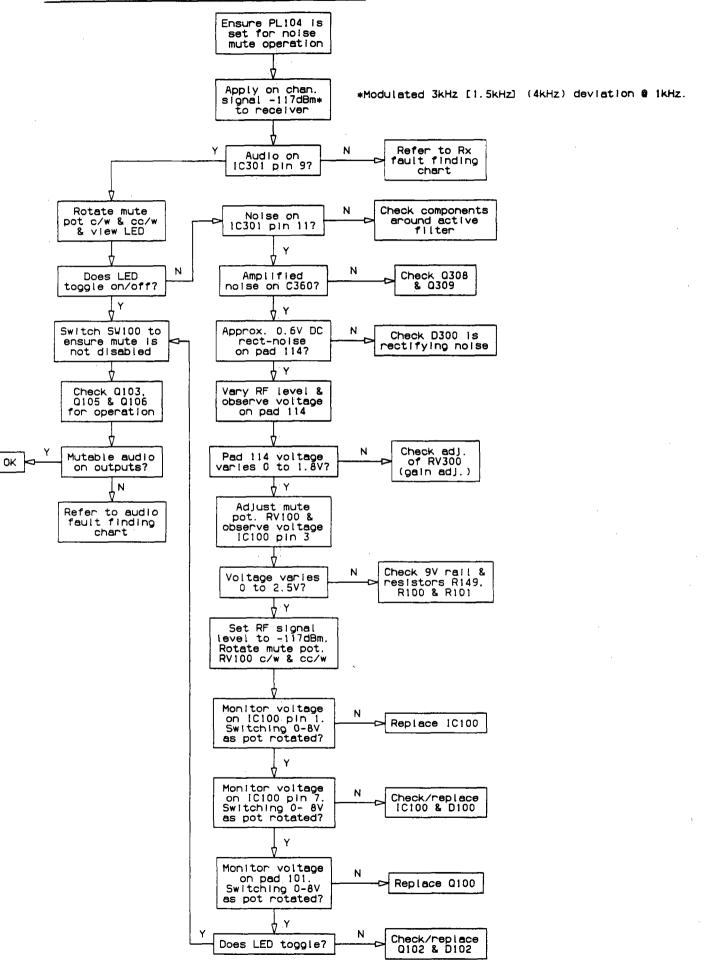



# 6.8 SYNTHESISER FAULT FINDING CHARTS


# A Refer to VCO Circuit Diagram

# B Refer to synthesiser Circuit Diagram

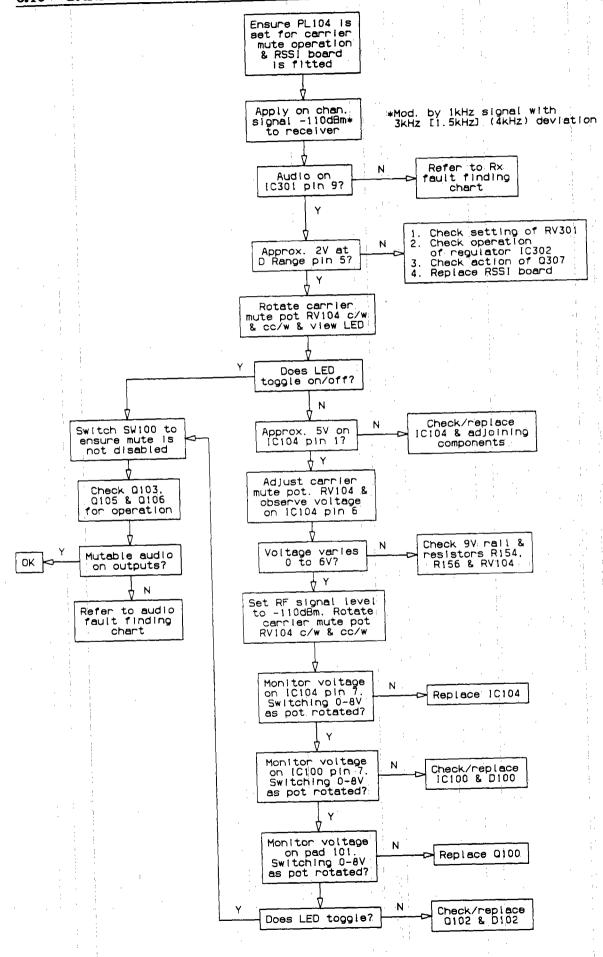



#### C Refer to synthesiser Circuit Diagram

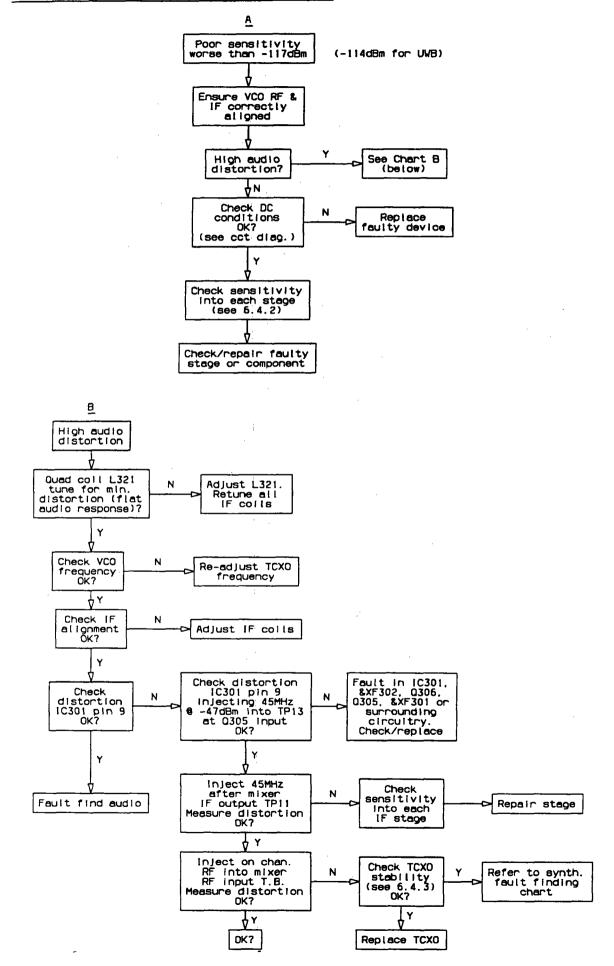




Page 6.7


#### 6.9 NOISE MUTE FAULT FINDING CHART

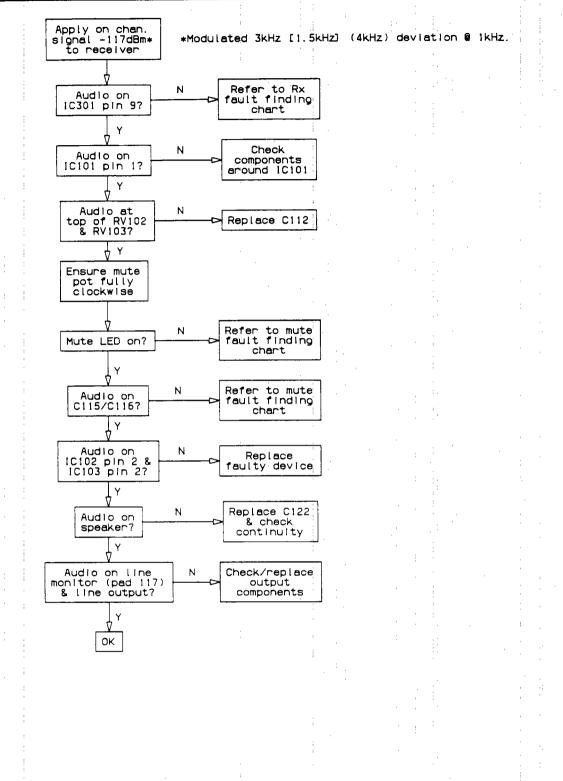



Page 6.8

T885 Fault Finding

# 6.10 CARRIER MUTE FAULT FINDING CHART




#### 6.11 RECEIVER FAULT FINDING CHARTS



ĺ

#### **T885** Fault Finding

## 6.12 AUDIO FAULT FINDING CHART



. .

-

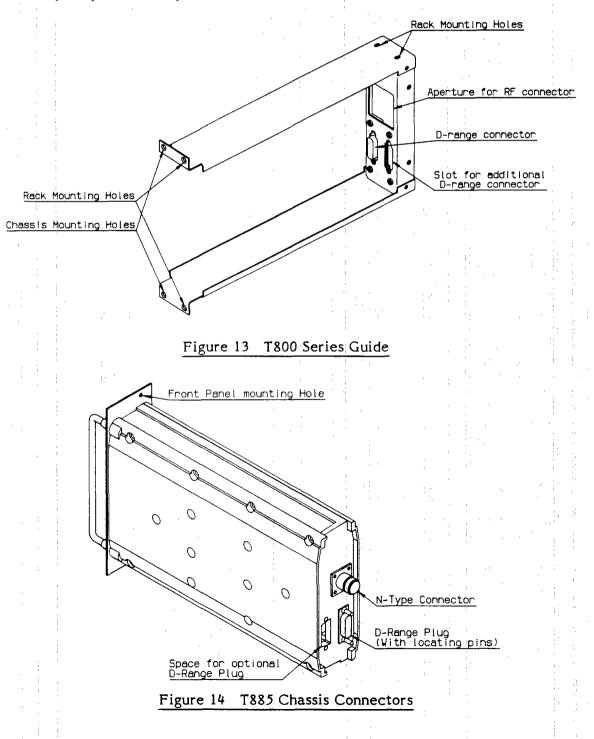
.

\_

:

---. с

[---| | |


#### SECTION 7 INSTALLATION

#### 7.1 RACK MOUNTING

The T885 base station receiver is designed for use in a standard 483mm rack frame using a Tait T800 Series guide which locates and mates the rear D-range connectors (refer to Figures 13 & 14).

A T800 Series guide is supplied with each T885 receiver. The guide is located in the rack frame with four screws, two at the rear and two at the front. The T885 is secured into the guide with two front panel mounting screws.

The RF input is via the rear N-type connector, while all DC, audio and control connections are via the D-range connector. An additional rear D-range connector (T800-03) is fitted when remote multichannel operation or additional control of low frequency lines is required.



## 7.2 RACK WIRING

Wire the D-range connector as shown in Figure 15. Ensure that the cables are not subjected to any stresses due to tight bends or incorrect lengths.

The RF coaxial cable to the N-type connector should be free from acute bends or twists. If access to the rear of the rack frame is restricted, the cable should be long enough to permit full withdrawal of the chassis from the guide.

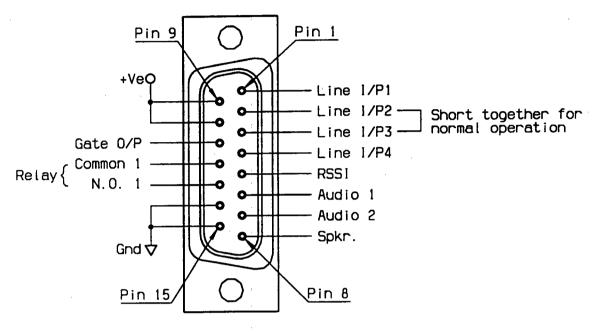



Figure 15 D-Range Wiring - Rear View

#### 7.3 POWER SUPPLY

If a non-standard Tait power supply is used, ensure that it is capable of providing enough current to drive the T800 system and is also free from excessive ripple or noise.

The system should be protected by the use of appropriately rated fuses in the power supply. Where several receivers are powered by the same supply, each unit should be individually protected with a fuse.

# Note: It is particularly important when the prime power source is a battery that fuses be fitted in all supply lines.

#### 7.4 REVERSE POLARITY PROTECTION

A shunt diode is fitted to each T885 receiver for protection against connection to a power supply of incorrect polarity.

Note: A fuse must be fitted in the power supply line for the diode to provide effective protection.

#### SECTION 8 SYSTEM CONFIGURATIONS

#### 8.1 GENERAL

Tait Fixed Equipment transmitters and receivers may be assembled into a wide variety of fixed equipment systems, from a simple land mobile base to a complex linking system operating in hot standby mode.

#### 8.2 LINK SELECTABLE FEATURES

The T885 comes with a number of link selectable features which give added system flexibility.

#### 8.2.1 FLAT OR DE-EMPHASISED RESPONSE

The links of PL101 and PL103 may be set to give either a flat or de-emphasised audio frequency response (refer to Section 4.4 for further details).

#### 8.2.2 MUTE RELAY CONTROL

A relay with undedicated contacts (RL100) is available in the audio processor circuit block for various switching applications. A link (PL102) is available for control of the relay from the mute circuit (refer to Section 4.4). This makes the relay suitable for controlling the keying of a transmitter in repeater applications.

#### 8.2.3 MUTE SELECTION

Link PL104 may be set to operate with noise mute or carrier mute (refer to Section 4.4).

#### 8.2.4 RECEIVER DISABLE

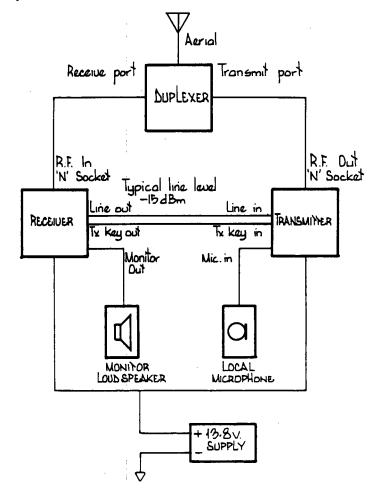
The receiver audio can be disabled by pulling the "Rx disable" line low. When the circuit is pulled from low to high, the receiver audio cannot be re-enabled until the disable timer completes its operation. This time is variable from 15ms to 200ms by adjusting RV101 in the audio processor section.

If required, the operation of this circuit can be disabled by changing the link of PL100 from 1-2 to 2-3.

Typical applications of the receiver disable are as an extra mute for signalling purposes, or when the T885 is configured as a line controlled base station (refer to Section 8.4)

#### 8.2.5 CTCSS CONFIGURATION

Links PL105 & PL106 select various CTCSS options (refer to Section 9.5.4).


#### 8.2.6 300Hz HIGH PASS FILTER

Link PL105 also allows the insertion of this filter to improve hum and noise performance.

#### 8.3 TALK THROUGH REPEATER

#### Refer to Figure 16.

In this configuration the receiver directly keys the transmitter when the signal is received. The demodulated audio is fed via 600 ohm lines to the transmitter to modulate the carrier. The receiver and transmitter operate simultaneously and must therefore be on different frequencies. The minimum frequency separation depends on the duplexer used.





#### 8.4 LINE CONTROLLED BASE STATION (WITHOUT TALK THROUGH)

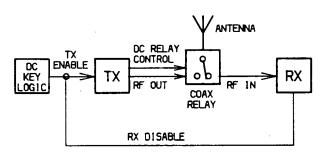



Figure 17 Basic Configuration

#### **T885 System Configurations**

This installation contains a transmitter and receiver which may or may not be on the same frequency, thus simultaneous transmission and reception is not possible. When the transmitter is keyed, the coaxial relay is also energised. When the relay is in its rest position, signals from the aerial are passed to the receiver.

The receiver is disabled when the transmitter is energised to prevent the receiver mute opening from RF due to lack of isolation in the relay, direct radiation or the noise skirt of the dual frequency link.

Since the base station may be controlled via a 2-wire line and a 4-wire to 2-wire hybrid, there is a possibility of system oscillation if the receiver is not disabled during transmit. This occurs when the transmit energy enters the receiver and produces an audio response which can pass from the receive to the transmit audio part of the hybrid (impedance imbalance, etc).

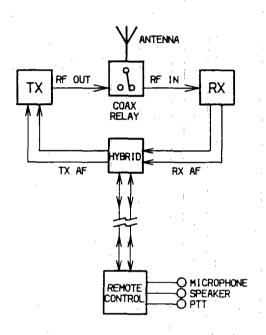
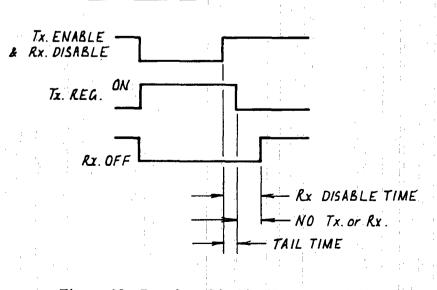



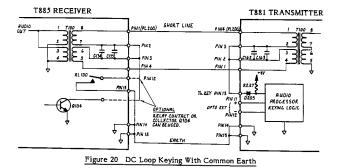

Figure 18 Remote Line Controlled Base Station

#### 8.4.1 TRANSMITTER TAIL TIMER





If the transmitter has a tail timer fitted:


- 1. The receiver disable timer must be set so that  $t_{Rx/Dis} > t_{Tx/Tail}$ .
- If the system configuration also uses an aerial changeover relay as well as the tail timer, the changeover relay must be driven from the relay driver (Q103) in the audio processor rather than by Tx key or Tx enable.
- Depending on tail time requirements, it is possible for the transmitter tail time to exceed the receiver disable time capability. In this situation the receiver disable line should also be driven from relay driver Q105.

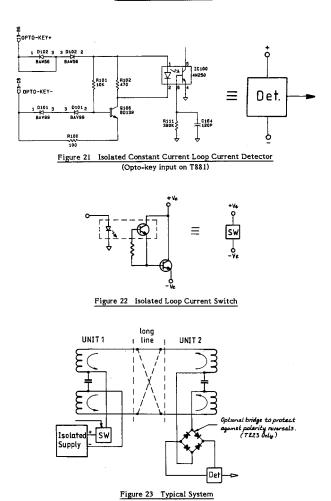
#### 8.5 DC LINE KEYING

Where the transmitter and receiver are separated by only a short distance and DC isolation is not required, DC loop keying may be employed.

A small DC current (usually less than 10mA) can be fed via the balanced 2-wire line to provide remote control of various functions.

In a duplex system the receiver mute is used to key a transmitter, provided there is a common earth between the two units (refer to Figure 20).




Where the receiver and transmitter (or remote control) are distant, DC loop keying is provided by an isolated supply, driver and detector because an earth cannot be relied on (refer to Figures 21, 22 & 23). ٠ť

jî,

-6

đ

11



Page 8.5

#### SECTION 9 STANDARD OPTIONS

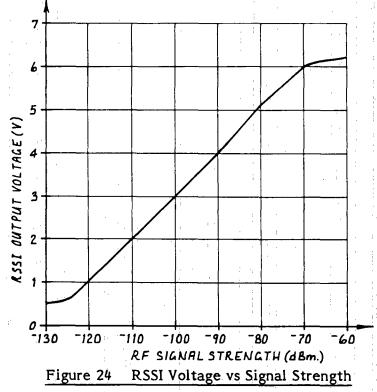
#### 9.1 GENERAL

The T885 is available with a range of standard options to suit many requirements. For further details on these or more specialised options, please contact your nearest Tait dealer or agent.

#### 9.2 TCXO

A high stability TCXO is available to suit specific requirements. The stability of this and the standard TCXO is set out below:

<u>+</u>1ppm 0°C to +60°C <u>+</u>1.5ppm -30°C to +60°C (standard)


They are pin compatible devices and may be fitted in location =IC2 in the synthesiser compartment.

Refer to Section 1.3 for details of specific versions.

#### **9.3** RSSI

The RSSI is a plug-in option PCB which may be retrofitted to the receiver. It provides a DC voltage proportional to the received signal strength. This voltage is available at the rear D-range connector and may be used for various applications including voting.

Typical voltage against signal strength characteristics are shown in Figure 24 below:



When fitted, the RSSI also gives the capability of high level signal strength muting, which may be selected on PL104 (refer to Section 4.4). The mute threshold may be set between -115dBm and -70dBm on RV104.

#### 9.4 MULTICHANNEL

#### 9.4.1 REMOTE

For multichannel operation it is necessary to fit an additional D-range connector (T800-03) to the rear of the chassis and replace the standard plug-in EPROM PCB with the T800-07 multichannel memory PCB. Three channel select lines (CH SEL 0, 1 & 2) are brought into the D-range connector compartment and should be connected to pins 11, 12 and 13 of the extra D-range, providing 8 channel control. The fourth wire is earth and should be soldered onto the main PCB.

For remote operation it is necessary to disable these three lines internally by switching the 3 least significant address DIP switches (SW1:1-3) to the off position. Channel selection is achieved by pulling one or more of the channel select lines low.

If more channels are required (up to 128 are available), a hole must be drilled in the end wall of the synthesiser compartment to route the extra channel select wires. Later models may have an access slot between the synthesiser and D-range compartments.

#### 9.4.2 INTERNAL SELECTION

The EPROM can be loaded with up to 128 channel frequencies, each of which is addressable via the 8 bit DIP switch (SW1). Thus, one of 128 channel operation is possible.

#### 9.5 CTCSS

#### 9.5.1 SINGLE CHANNEL - SINGLE TONE

For single tone use, the T800-02 unit should be used. This is a retrofit PCB which is mounted on the specially provided lugs in the audio processor compartment of the receiver (refer to Figure 25).

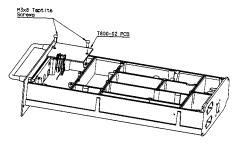



Figure 25 T800-02 Mounting Details

Access to all necessary audio and power supply points is provided by accessory pads in the audio processor. Refer to Figure 26 for installation and wiring details.

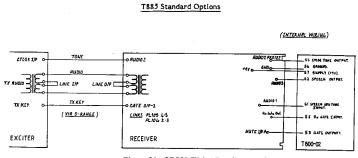
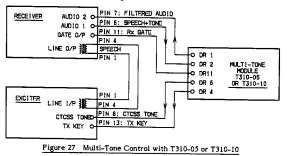



Figure 26 CTCSS Wiring Detail

Outputs are available on the receiver to key the transmitter, when used in a repeater situation, and to pass the CTCSS tone to the exciter. Connections to the exciter are given in Section 8.

If required, the CTCSS processing can be carried out in the transmitter (refer to M881-00). In this case the CTCSS tone is passed along the 600 ohm line and decoded in the transmitter.

#### 9.5.2 MULTICHANNEL - SEPARATE TONES


1

-1

In applications where each RF channel has a separate CTCSS tone, it is necessary to take the CTCSS tone select lines to the additional rear D-range connector. From the D-range, up to eight RF channels and any of the CTCSS tones can be selected by grounding the necessary pins.

#### 9.5.3 SINGLE CHANNEL - MULTI-TONE

Where more than one tone is used on the same channel, some form of external encoding/decoding such as the T310-05 or T310-10 must be used. The system should be connected as shown in Figure 27.



An alternative configuration is to send speech plus tone along the 600 ohm line and carry out the detection on the transmitter audio. However, this would require the 300Hz high pass filter formed by Q109 to be linked out, thus degrading the residual hum and noise performance by 10dB.

Refer to the transmitter Service Manual (M881-00) for further details.

#### 9.5.4 AUDIO PROCESSOR LINKING DETAILS FOR CTCSS

The audio processor links must be appropriately connected for the CTCSS option used, as shown in the table below.

| CTCSS Option                          | PL105 | PL106 |
|---------------------------------------|-------|-------|
| standard, no CTCSS                    | 2-3   | 2-3   |
| CTCSS tone + speech<br>to line output | 1-2   | 2-3   |
| internal CTCSS                        | 4-5   | 2-3   |
| external CTCSS                        | 4-5   | 1-2   |

The conditions stated in the above table are defined as follows:

standard, no CTCSS - no CTCSS or other sub-audio signalling used - audio bandwidth 300Hz to 3kHz - hum & noise -49dB [-44dB] (-44dB) CTCSS tone + speech - tone and speech transmitted down 600 ohm line to line output - audio bandwidth 10Hz to 3kHz - hum & noise - 39dB [-34dB] (-34dB) - decoding performed in exciter/transmitter internal CTCSS - decoding performed in receiver by T800-02 or similar - re-encoded tone output via "audio 2", speech sent down 600 ohm line external CTCSS - decoding performed through the receiver (but externally) by T310-05 or similar - speech injected back into receiver via "audio 2" and sent down 600 ohm line

#### SECTION 10 PARTS LIST

#### INTRODUCTION

The 10 digit numbers (000-00000-00) in this Parts List are "internal part numbers" (IPN's). Your spare parts orders can be handled more efficiently if you quote: equipment type, circuit reference and IPN, along with a brief description of the part.

The components listed in this Parts List are divided into two main types: those with a circuit reference (e.g. C2, D106, R121, etc) and those without (miscellaneous and mechanical).

Those with a circuit reference are grouped firstly by PCB, then by component type in numerical order. Each component entry comprises four columns: the circuit reference, variant number (if applicable), IPN and description. A number in the variant column indicates that this particular component is fitted only to that variant.

The miscellaneous and mechanical section lists the variant and common parts in IPN order.

v

---- ·1

~<sup>1</sup>

.----

~~ ;

r -,

r · --

- -.

i m

·----

ļ

, ----

h -----

- -

# INDEX

| Main PCB:       | Capacitors<br>Diodes<br>Helicals<br>Integrated Circuits<br>Coils<br>Headers/Plugs<br>Transistors<br>Resistors<br>Sockets/Switches<br>Transformers<br>Crystal Filters | 10.3<br>10.4<br>10.4<br>10.4<br>10.5<br>10.5<br>10.5<br>10.6<br>10.6<br>10.6 |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| VCO PCB         |                                                                                                                                                                      | 10.7                                                                         |
| EPROM PCB       |                                                                                                                                                                      | 10.8                                                                         |
| RSSI PCB        |                                                                                                                                                                      | 10.9                                                                         |
| Miscellaneous & | 10.10                                                                                                                                                                |                                                                              |

|                |          |                              |                                                                                      |                      | i.             |          |                              |                                                                                                                  |
|----------------|----------|------------------------------|--------------------------------------------------------------------------------------|----------------------|----------------|----------|------------------------------|------------------------------------------------------------------------------------------------------------------|
| REF            | VAR      | IPN                          | DESCRIPTION                                                                          |                      | REF            | VAR      | IPN                          | DESCRIPTION                                                                                                      |
| C1             |          | 015.22120.01                 | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO                                              |                      | <b></b>        |          | A15 00100 00                 |                                                                                                                  |
| cz             |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 120P 5% NPO                                              | 1                    | C128<br>C129   |          |                              | CAPACITOR CERAMIC 1205 CHIP 100N 10% X7R<br>CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                             |
| cs             |          | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                             |                      | &C130          | 10       | 015-25100-08                 |                                                                                                                  |
| C4             |          | 015-23120-01                 | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO                                              |                      | £C130          | 12       | 015-25100-08                 |                                                                                                                  |
| C5             |          | 015-23120-01                 | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO                                              |                      | £C130          | 15       | 015-24470-08                 |                                                                                                                  |
| C6<br>C7       |          | 015-23120-01                 | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO                                              |                      | &C130          | 17       | 015-24470-08                 |                                                                                                                  |
| C7<br>C8       |          | 015-23120-01<br>015-23120-01 | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO<br>CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO   |                      | &C130          | 20<br>22 | 015-25100-08                 |                                                                                                                  |
| c9             |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 120F 5% HPO                                              |                      | &C130          | 25       | 015-25100-08<br>015-24470-08 | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                               |
| C13            |          | 020-08100-03                 | CAPACITOR ELECTRO RADIAL 10UF 50V 5X11MM                                             |                      | AC130          | 27       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                                                          |
| C14            |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             |                      | EC131          | ,10      | 015-24100-08                 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5                                                                         |
| C15            |          | 015-22560-01                 | CAPACITOR CERAMIC 0805 CHIP 56P 5% NPO 5                                             |                      | &C131          | 14       | 015-24220-08                 | CAPACITOR CERAMIC 0805 CHIP 2N2 10% X7R                                                                          |
| C16<br>C17     |          | 015-23680-08                 | CAPACITOR CERAMIC 0805 CHIP 680P 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 470P 10% X7R |                      | &C131          | 15       | 015-24100-08                 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5                                                                         |
| · C19          |          | 015-23470-08                 | CAPACITOR CERAMIC 1805 CHIP 470P 10% X7R<br>CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R |                      | &C131<br>&C131 | 20<br>24 | 015-24100-08<br>015-24220-08 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5<br>CAPACITOR CERAMIC 0805 CHIP 2N2 10% X7R                              |
| C20            |          | 020-08100-03                 |                                                                                      |                      | &C131          | 25       | 015-24220-08                 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5                                                                         |
| C21            |          | 015-25100-08                 | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R                                              |                      | 4C132          | 10       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                                                          |
| C22            |          | 015-25150-08                 | CAPACITOR CERAMIC 0805 CHIP 15N 10% X7R                                              |                      | &C132          | 12       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                                                          |
| C23            |          | 022-06330-03                 | CAPACITOR METAL POLYESTER 330N 10% 50V 5                                             |                      | &C132          | 14       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                                                          |
| C24<br>C25     |          | 020-08100-03<br>015-05470-08 | CAPACITOR ELECTRO RADIAL 10UF 50V 5X11MM<br>CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R  |                      | &C132          | 15       | 015-25100-08                 | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R                                                                          |
| C25            |          | 025-08100-02                 | CAPACITOR CERAMIC 1206 CHIP 4/N 10% X/R:<br>CAPACITOR TANT BEAD 10M 10% 16V          |                      | &C132<br>&C132 | 17<br>20 | 015-25100-08                 | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                               |
| C27            |          | 025-08100-02                 | CAPACITOR TANT BEAD 10M 10% 16V                                                      | 1                    | &C132          | 22       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                                                          |
| .C28           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             |                      | &C132          | 24       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                                                          |
| -C30           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             | 1                    | &C132          | 25       | 015-25100-08                 | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R                                                                          |
| C31            |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             | 1                    | LC132          | 27       | 015-25100-08                 | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R                                                                          |
| C32<br>C33     |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |                      | C133 :         | i        | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                                                          |
| C34            |          | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP IN 10% X/H 5                                             |                      | C134<br>C135   | 1        | 020-07470-91<br>020-07470-91 | CAPACITOR ELECTRO RADIAL 4M7 63V 6X11MM<br>CAPACITOR ELECTRO RADIAL 4M7 63V 6X11MM                               |
| C35            |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             |                      | C136           | i.       | 015-24100-08                 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5                                                                         |
| C36            |          | 020-08100-03                 | CAPACITOR ELECTRO RADIAL 10UF 50V 5X11MM                                             | 1                    | C137           |          |                              | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5                                                                         |
| C36            |          | 025-08100-02                 | CAPACITOR TANT BEAD 10M 10% 16V                                                      | 1                    | C138           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                                                         |
| C39<br>C40     |          | 025-08100-02<br>015-06100-08 | CAPACITOR TANT BEAD 10M 10% 16V                                                      |                      | C139           |          |                              | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                                                          |
| C40<br>C41     |          | 015-24100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |                      | . C140<br>C141 |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R<br>CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                             |
| C42            |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             | 1                    | C142           | i.       | 020-08100-08                 |                                                                                                                  |
| C100           |          | 020-07100-02                 | CAPACITOR ELECTRO RADIAL 1M 50V 5X11MM                                               | 1                    | C200           |          |                              | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                                                         |
| &C101          | 10       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | 1                    | C201           | ÷.,      | 020-08100-03                 | CAPACITOR ELECTRO RADIAL 10UF 50V 5X11MM                                                                         |
| &C101          | 12       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | I.                   | C202           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                                                         |
| &C101<br>&C101 | 15<br>17 | 015-24470-08<br>015-24470-08 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R   |                      | C203           |          | 015-24100-08                 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5                                                                         |
| &C101          | 20       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7H                                              | 1                    | C204<br>C205   |          | 020-09470-07                 | CAP 470M 16V 20% ELEC VRT 8*20 3.5MM L/S<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                              |
| &C101          | 22       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              |                      | C206           |          |                              | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5                                                                         |
| &C101          | 25       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | $r_{\rm eff} = 1000$ | C207           | i i      | 020-08100-03                 | CAPACITOR ELECTRO RADIAL 10UF 50V 5X11MM                                                                         |
| &C101          | 27       | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | 1                    | C210           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                                                         |
| C102<br>&C103  | 10       | 020-08470-02<br>015-05470-08 | CAPACITOR ELECTRO RADIAL 47M 16V 6X11MM                                              |                      | C211           | :        | 025-08100-02                 | CAPACITOR TANT BEAD 10M 10% 16V                                                                                  |
| &C103          | 12       | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R<br>CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R   |                      | C212<br>C213   |          | 025-07330-01<br>015-24470-08 | CAPACITOR TANT BEAD 3M3 35V<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                           |
| &C103          | 14       | 015-23470-08                 | CAPACITOR CERAMIC 0805 CHIP 470P 10% X7R                                             |                      | C214           | 1        |                              | CAPACITOR ELECTRO RADIAL 1M 50V 5X11MM                                                                           |
| &C103          | 15       | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              |                      | C215           |          | 020-08100-03                 | CAPACITOR ELECTRO RADIAL 10UF 50V 5X11MM                                                                         |
| &C103          | 17       | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              |                      | C216           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                                                         |
| &C103<br>&C103 | 20<br>22 | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              |                      | C217           | i        | 015-23120-01                 | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO                                                                          |
| &C103          | 24       | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 470P 10% X7R  |                      | C218<br>C219   |          | 015-23120-01 015-06100-08    | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO<br>CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                              |
| &C103          | 25       | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              |                      | C220           | 1.1      |                              | CAPACITOR CERAMIC 0805 CHIP 100N 10% X7H                                                                         |
| &C103          | 27       | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              |                      | C221           |          |                              | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                                                         |
| &C104          | 10       | 015-21220-01                 | CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0 25P                                             |                      | C222           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                                                         |
| &C104<br>&C104 | 12<br>15 | 015-21220-01<br>015-21220-01 | CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0.25P |                      | C301           | 1        | 015-21220-01                 | CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0.25P                                                                         |
| &C104          | 17       |                              | CAPACITOR CERAMIC USOS CHIP 2P2 4-0.25P                                              |                      | C302<br>C303   |          | 015-21390-01                 | CAPACITOR CERAMIC 0805 CHIP 3P9 +/-0.25P                                                                         |
| &C104          | 20       | 015-21220-01                 |                                                                                      |                      | C304           |          | 015-21390-01                 | CAPACITOR CERAMIC 0805 CHIP 3P9 +/-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0.25P                             |
| &C104          | 22       | 015-21220-01                 | CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0.25P                                             |                      | C305           |          | 015-22270-01                 | CAPACITÓR CERAMIC 0805 CHIP 272 5% NPO 5                                                                         |
| &C104          | 25       | 015-21220-01                 |                                                                                      |                      | C306           |          | 015-25150-08                 | CAPACITOR CERAMIC 0805 CHIP 15N 10% X7R                                                                          |
| &C104          | 27       |                              | CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0.25P                                             |                      | C307           | 1        | 015-22820-01                 | CAPACITOR CERAMIC 0805 CHIP 82P 5% NPO 5                                                                         |
| C105<br>&C106  | 10       |                              | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             |                      | C308 -         |          | 015-22820-01                 | CAPACITOR CERAMIC 0805 CHIP 82P 5% NPO 5                                                                         |
| &C106          | 12       | 015-22470-01<br>015-22470-01 | CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5 |                      | C309<br>C310   | 1        | 015-22820-01 015-06100-08    | CAPACITOR CERAMIC 0805 CHIP 82P 5% NPO 5                                                                         |
| 4C106          | 14       | 015-23220-01                 |                                                                                      |                      | C310           |          |                              | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R                              |
| &C106          | 15       | 015-22470-01                 |                                                                                      |                      | C312           |          | 015-22270-01                 | CAPACITOR CERAMIC 0805 CHIP 27P 5% NPO 5                                                                         |
| &C106          | 17       | 015-22470-01                 | CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5                                             |                      | C313           |          | 015-25150-08                 | CAPACITOR CERAMIC 0805 CHIP 15N 10% X7R                                                                          |
| AC106          | 20       | 015-22470-01                 |                                                                                      |                      | C314           |          |                              | CAPACITOR CERAMIC 0805 CHIP 82P 5% NPO 5                                                                         |
| &C106<br>&C106 | 22<br>24 | 015-22470-01<br>015-23220-01 |                                                                                      |                      | C315           |          | 015-22820-01                 | CAPACITOR CERAMIC 0805 CHIP 82P 5% NPO 5                                                                         |
| AC106          | 25       | 015-22470-01                 |                                                                                      |                      | C316<br>C317   |          |                              | CAPACITOR CERAMIC 0805 CHIP 82P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 3P3 4-0.25P                              |
| &C106          | 27       |                              | CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5                                             |                      | C318           |          |                              | CAPACITOR CERAMIC 0805 CHIP 3P5 40.25                                                                            |
| C107           |          | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              |                      | C319           | 1        |                              | CAPACITOR CERAMIC 0805 CHIP 39P 5% NPO 5                                                                         |
| C108           |          | 015-24100-08                 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5                                             |                      | C320           |          |                              | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO                                                                          |
| C110<br>C111   |          | 020-09100-03                 |                                                                                      | 1                    | C321           |          | 015-21270-01                 | CAPACITOR CERAMIC 0805 CHIP 2P7 +/-0.25P                                                                         |
| C112           |          | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR ELECTRO RADIAL 10UF 50V 5X11MM  | 1                    | C322           |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                                                          |
| C112           |          | 015-24100-08                 | CAPACITOR ELECTRO RADIAL TOUR SUV SXITMM<br>CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5 |                      | C323<br>C324   | 1        | 015-22150-01                 | CAPACITOR CERAMIC 0805 CHIP 15P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                              |
| C114           |          | 015-24100-08                 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5                                             |                      | C325           |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR ELECTRO RADIAL 10UF 50V 5X11MM                              |
| C115           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             | 1                    | C326           |          |                              | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5                                                                         |
| C116           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             |                      | C327           |          |                              | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R                                                                          |
| C117<br>C118   |          | 020-09100-03                 | CAPACITOR ELECTRO RADIAL 100M 16V 8X11MM                                             |                      | &C328          | 10       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                                                         |
| C118           |          | 020-09100-03                 | CAPACITOR ELECTRO RADIAL 100M 16V 8X11MM<br>CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |                      | &C328<br>&C328 | 12       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                                                         |
| C120           |          | 015-24100-08                 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5                                             |                      | LC328          | 14<br>15 | 015-22180-01<br>015-21820-01 | CAPACITOR CERAMIC 0805 CHIP 18P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                             |
| C121           |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             |                      | AC328          | 17       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP BP2 +/-0.25P                                                                         |
| C122           |          | 020-09470-05                 |                                                                                      |                      | &C328          | 20       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                                                         |
| -C123          |          | 015-06100-08                 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R                                             |                      | &C328          | 22       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                                                         |
| C124<br>C125   |          | 020-09100-03                 | CAPACITOR ELECTRO RADIAL 100M 16V 8X11MM<br>CAPACITOR ELECTRO RADIAL 220M 16V 10X12. |                      | AC328          | 24       | 015-22180-01                 | CAPACITOR CERAMIC 0805 CHIP 18P 5% NPO 5                                                                         |
| C125           | 1        | 020-09220-01                 | CAPACITOR ELECTRO RADIAL 220M 16V 10X12.<br>CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R |                      | &C328<br>&C328 | 25<br>27 | 015-21820-01 015-21820-01    | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                             |
| C127           |          |                              | CAPACITOR ELECTRO RADIAL 220M 16V 10X12.                                             |                      | C329           |          |                              | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 3P3 +/-0.25P                             |
|                |          |                              | · · · · · · · · · · · · · · · · · · ·                                                |                      | - COLO         |          |                              | LIGHTON CENTRE VOUS CHIP SPS 4/0/20P                                                                             |
|                |          |                              |                                                                                      |                      |                |          |                              | and the second |

ĩ

i P

- 1

. .

, , ,

. . .

-

| REF            | VAR      | IPN                          | DESCRIPTION                                                                          | REF                 | VAR      | IPN                          | DESCRIPTION                                                                          |
|----------------|----------|------------------------------|--------------------------------------------------------------------------------------|---------------------|----------|------------------------------|--------------------------------------------------------------------------------------|
| AC330          | 10       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                             | C373                |          | 015-21330-01                 | CAPACITOR CERAMIC 0805 CHIP 3P3 4-0.25P                                              |
| LC330          | 12       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                             |                     |          |                              |                                                                                      |
| £C330          | 14       | 015-22150-01                 | CAPACITOR CERAMIC 0805 CHIP 15P 5% NPO 5                                             | D1                  |          | 001-10000-70                 | DIODE SMD BAV70 DUAL SWITCH SOT-23 COMMO                                             |
| £C330          | 15       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 8P2 +-0.25P   | 02<br>D100          |          | 001-10000-70<br>001-10000-99 | DIODE SMD BAV70 DUAL SWITCH SOT-23 COMMO<br>DIODE SMD BAV99 DUAL SWITCH SOT-23 SINGL |
| &C330<br>&C330 | 17<br>20 | 015-21820-01<br>015-21820-01 | CAPACITOR CERAMIC 0805 CHIP 8P2 #40,25P                                              | D101                |          | 001-10000-56                 | DIODE SMD BAW56 DUAL SWITCH SOT-23 COMMO                                             |
| &C330          | 22       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +-0.25P                                              | D102                |          | 008-00013-32                 | LED 3MM RED LOW CURRENT LESS MOUNTING                                                |
| &C330          | 24       | 015-22150-01                 | CAPACITOR CERAMIC 0805 CHIP 15P 5% NPO 5                                             | D103                |          | 001-10000-70                 | DIODE SMD BAV70 DUAL SWITCH SOT-23 COMMO                                             |
| &C330          | 25       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +-0.25P                                              | D104                |          | 001-10000-70                 | DIODE SMD BAV70 DUAL SWITCH SOT-23 COMMO                                             |
| &C330<br>C331  | 27       | 015-21820-01<br>015-21330-01 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 3P3 +/-0.25P | D105<br>D106        |          | 008-00013-35                 | LED 3MM GREEN LOW CURRENT LESS MOUNTING<br>DIODE 1N4001 1A/50V                       |
| &C332          | 10       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                             | D107                |          | 001-00011-70                 | DIODE 1N4001 1A/SOV                                                                  |
| &C332          | 12       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                             | . D108              |          | 001-00011-70                 | DIODE 1N4001 1A/50V                                                                  |
| &C332          | 14       | 015-22180-01                 | CAPACITOR CERAMIC 0805 CHIP 18P 5% NPO 5                                             | D200<br>D201        |          | 001-10000-99<br>001-00011-60 | DIODE SMD BAV99 DUAL SWITCH SOT-23 SINGL<br>DIODE SR2607 6A/30V                      |
| &C332<br>&C332 | 15<br>17 | 015-21820-01<br>015-21820-01 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P | D203                |          | 001-10000-70                 | DIODE SMD BAV70 DUAL SWITCH SOT-23 COMMO                                             |
| AC332          | 20       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2                                                      | D300                |          | 001-10000-56                 | DIODE SMD BAW56 DUAL SWITCH SOT-23 COMMO                                             |
| &C332          | 22       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +-0.25P                                              |                     |          |                              |                                                                                      |
| &C332<br>&C332 | 24<br>25 | 015-22180-01<br>015-21820-01 | CAPACITOR CERAMIC 0805 CHIP 18P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P | #H1<br>#H1          | 10<br>12 | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M<br>COIL HELICAL RES 2.625T 1.2MMSF 800-880M |
| &C332          | 27       | 015-21820-01                 | CAPACITOR CERAMIC 0805 CHIP 8P2 +/-0.25P                                             | 2H1                 | 14       | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M                                             |
| C333           |          | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | <b>#H</b> 1         | 15       | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M                                             |
| C334           |          | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | #H1<br>#H1          | 17<br>20 | 051-00564-00                 | COIL HELICAL RES 2.6257 1.2MMSF 800-880M<br>COIL HELICAL RES 2.4287 1.2MMSF 880-960M |
| C335<br>&C336  | 10       | 015-24100-08<br>015-22470-01 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5<br>CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5 | 8H1                 | 20       | 051-00565-00                 | COIL HELICAL RES 2.4281 1.2MMSF 880-960M                                             |
| &C336          | 12       | 015-22470-01                 | CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5                                             | ØH1                 | 24       | 051-00565-00                 | COIL HELICAL RES 2.428T 1.2MMSF 880-960M                                             |
| &C336          | 14       | 015-22220-01                 | CAPACITOR CERAMIC 0805 CHIP 22P 5% NPO 5                                             | <b>#H1</b>          | 25       | 051-00565-00                 | COIL HELICAL RES 2.428T 1.2MMSF 880-960M                                             |
| &C336<br>&C336 | 15<br>17 | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R   | 8H1<br>8H2          | 27<br>10 | 051-00565-00<br>051-00564-00 | COIL HELICAL RES 2.4287 1.2MMSF 880-960M<br>COIL HELICAL RES 2.6257 1.2MMSF 800-880M |
| &C336          | 20       | 015-24470-08<br>015-22470-01 | CAPACITOR CERAMIC 0805 CHIP 417 10% X7H                                              | #H2                 | 12       | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M                                             |
| &C336          | 22       | 015-22470-01                 | CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5                                             | EH2                 | 14       | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M                                             |
| &C336          | 24       | 015-22220-01                 | CAPACITOR CERAMIC 0805 CHIP 22P 5% NPO 5                                             | #H2                 | 15       | 051-00564-00                 | CON HELICAL RES 2.625T 1.2MMSF 800-880M                                              |
| &C336<br>&C336 | 25<br>27 | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R   | #H2<br>#H2          | 17<br>20 | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M<br>COIL HELICAL RES 2.428T 1.2MMSF 880-960M |
| &C337          | 10       | 015-22120-01                 | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                             | IH2                 | 22       | 051-00565-00                 | COIL HELICAL RES 2.428T 1.2MMSF 880-960M                                             |
| &C337          | 12       | 015-22120-01                 | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                             | 8H2                 | 24       | 051-00565-00                 | COIL HELICAL RES 2.428T 1.2MMSF 880-960M                                             |
| &C337<br>&C337 | 14<br>15 | 015-22270-01<br>015-22100-01 | CAPACITOR CERAMIC 0805 CHIP 27P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P  | #H2<br>#H2          | 25<br>27 | 051-00565-00                 | COIL HELICAL RES 2.4287 1.2MMSF 880-960M<br>COIL HELICAL RES 2.4287 1.2MMSF 880-960M |
| &C337          | 17       | 015-22100-01                 | CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P                                              | 4H3                 | 10       | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M                                             |
| &C337          | 20       | 015-22120-01                 | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                             | #H3                 | 12       | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M                                             |
| &C337<br>&C337 | 22<br>24 | 015-22120-01<br>015-22270-01 | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 27P 5% NPO 5 | #H3<br>#H3          | 14<br>15 | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M<br>COIL HELICAL RES 2.625T 1.2MMSF 800-880M |
| &C337          | 25       | 015-22100-01                 | CAPACITOR CERAMIC 0805 CHIP 2/P 5% NPO 5                                             | #H3                 | 17       | 051-00564-00                 | COIL HELICAL RES 2.625T 1.2MMSF 800-880M                                             |
| &C337          | 27       | 015-22100-01                 | CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P                                              | PH3                 | 20       | 051-00565-00                 | COIL HELICAL RES 2.428T 1.2MMSF 880-960M                                             |
| &C338<br>&C338 | 10       | 015-22120-01                 | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                             | 1H3                 | 22       | 051-00565-00                 | COIL HELICAL RES 2.428T 1.2MMSF 880-960M                                             |
| &C338          | 12<br>14 | 015-22120-01<br>015-22270-01 | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 27P 5% NPO 5 | #H3<br>#H3          | 24<br>25 | 051-00565-00                 | COIL HELICAL RES 2.4281 1.2MMSF 880-960M<br>COIL HELICAL RES 2.4281 1.2MMSF 880-960M |
| &C338          | 15       | 015-22100-01                 | CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P                                              | #H3                 | 27       | 051-00565-00                 | COIL HELICAL RES 2.428T 1.2MMSF 880-960M                                             |
| &C338<br>&C338 | 17<br>20 | 015-22100-01<br>015-22120-01 | CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P<br>CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5  | IC1                 |          | 002-00017-47                 | INTEGRATED CCT SP8719 UHF 80/81 PRESCALE                                             |
| &C338          | 22       | 015-22120-01                 | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                             | 102                 | 10       |                              | TCXO 12.8MHZ +-1.5PPM -30 TO +70C DEG                                                |
| &C338          | 24       | 015-22270-01                 | CAPACITOR CERAMIC 0805 CHIP 27P 5% NPO 5                                             | IC2                 | 12       | 539-00010-44                 | TCXO 12.8MHZ +-1PPM 0 TO +60C                                                        |
| &C338<br>&C338 | 25<br>27 | 015-22100-01<br>015-22100-01 | CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P<br>CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P   | 102                 | 14<br>15 | 539-00010-45                 | TCXO 12.8MHZ +-1.5PPM -30 TO +70C DEG                                                |
| &C339          | 10       | 015-22470-01                 | CAPACITOR CERAMIC 0805 CHIP 10P 5% NPO 5                                             | 102                 | 17       | 539-00010-45<br>539-00010-44 | TCXO 12.8MHZ + 1.5PPM -30 TO +70C DEG<br>TCXO 12.8MHZ +-1PPM 0 TO +60C               |
| &C339          | 12       | 015-22470-01                 | CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5                                             | IC2                 | 20       | 539-00010-45                 | TCXO 12.8MHZ +-1.5PPM -30 TO +70C DEG                                                |
| LC339<br>LC339 | 14<br>15 |                              | CAPACITOR CERAMIC 0805 CHIP 22P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R  | 1C2<br>1C2          | 22<br>24 |                              | TCXO 12.8MHZ +-1PPM 0 TO +60C<br>TCXO 12.8MHZ +-1.5PPM -30 TO +70C DEG               |
| &C339          | 17       |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | 102                 | 25       |                              | TCXO 12.8MHZ +-1.5PPM -30 TO +70C DEG                                                |
| &C339          | 20       |                              | CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5                                             | 1C2                 | 27       | 539-00010-44                 | TCXO 12.8MHZ +-1PPM 0 TO +60C                                                        |
| &C339<br>&C339 | 22<br>24 |                              | CAPACITOR CERAMIC 0805 CHIP 47P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 22P 5% NPO 5 | 103                 |          |                              | INTEGRATED CCT NJ8820DP FREQ SYNTHESIZER                                             |
| &C339          | 25       |                              | CAPACITOR CERAMIC 0805 CHIP 22F 5% NPO 5                                             | 1C4<br>1C5          |          |                              | INTEGRATED CCT MC33078 DUAL OP AMP LO NO<br>INTEGRATED CCT 74HCU04 UNBUFFERED HEX IN |
| &C339          | 27       |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | 105                 |          | 002-74000-74                 | INTEGRATED CCT 74HC74 DUAL D F/F                                                     |
| C340           |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | IC100               |          |                              | INTEGRATED CCT 358P DUAL OP AMP                                                      |
| C341<br>C342   |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R   | IC101<br>IC102      |          |                              | INTEGRATED CCT 358P DUAL OP AMP<br>INTEGRATED CCT TDA7231 1.6W AF PWR                |
| C343           |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | IC102               |          |                              | INTEGRATED CCT TDA7231 1.6W AF PWR                                                   |
| C344           |          | 015-24470-08                 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | IC104               |          | 002-00012-40                 | INTEGRATED CCT 358P DUAL OP AMP                                                      |
| C345           |          |                              | CAPACITOR CERAMIC 0805 CHIP 15P 5% NPO 5                                             | IC201               |          |                              | INTEGRATED CCT 358P DUAL OP AMP                                                      |
| C346<br>C347   |          |                              | CAPACITOR TANT BEAD 10M 10% 16V<br>CAPACITOR CERAMIC 0805 CHIP 15P 5% NPO 5          | IC202<br>IC300      |          |                              | INTEGRATED CCT 317L 100MA REG 3 TERMINAL<br>MIXER SBL-1Z 10-1000MHZ                  |
| C348           |          |                              | CAPACITOR CERAMIC 1206 CHIP 15F 3% HPO 5                                             | IC301               |          |                              | INTEGRATED CCT MC3361 LO PWR FM IF                                                   |
| C349           |          |                              | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              | tC302               |          | 002-00014-58                 | INTEGRATED CCT 78L05 5V 100MA REGULATOR                                              |
| C350<br>C351   |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R   |                     |          | 062 08126 15                 | CON ANY 1 FTR FMM UOB 0 Shind WIDE                                                   |
| C352           |          |                              | CAPACITOR CERAMIC 0805 CHIP 39P 5% NPO 5                                             | L1<br>L1 <b>0</b> 0 |          |                              | COIL AW 1.5T/2.5MM HOR 0.8MM WIRE<br>INDUCTOR FIXED 100UH AXIAL                      |
| C353           |          |                              | CAPACITOR CERAMIC 0805 CHIP 39P 5% NPO 5                                             | L301                |          |                              | COIL A/W 1.5T/2MM HOR 0.8MM WIRE                                                     |
| C354           |          |                              | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              | L302                |          |                              | COIL AW 1.5T/2.5MM HOR 0.8MM WIRE                                                    |
| C355<br>C356   |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R   | L303<br>L305        |          |                              | COIL ANY 1.57/2MM HOR 0.8MM WIRE<br>INDUCTOR FIXED 330NH AXIAL                       |
| C357           |          | 015-23120-01                 | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO                                              | L308                |          |                              | INDUCTOR FIXED 330NH AXIAL                                                           |
| C358           |          |                              | CAPACITOR CERAMIC 0805 CHIP 120P 5% NPO                                              | L310                |          |                              | INDUCTOR FIXED 330NH AXIAL                                                           |
| C359<br>C360   |          |                              | CAPACITOR CERAMIC 1205 CHIP 47N 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R   | L311<br>L312        |          |                              | INDUCTOR FIXED 330NH AXIAL<br>COIL TAIT NO 622 20-120MHZ 7MM CAN                     |
| C362           |          | 015-05470-08                 | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              | L313                |          |                              | COIL TAIT NO 622 20-120MHZ 7MM CAN                                                   |
| C363           |          |                              | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              | L314                |          |                              | COIL TAIT NO 622 20-120MHZ 7MM CAN                                                   |
| C364<br>C365   |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R<br>CAPACITOR TANT BEAD 10M 10% 16V           | L315<br>L316        |          |                              | COIL TAIT NO 622 20-120MHZ 7MM CAN<br>COIL TAIT NO 622 20-120MHZ 7MM CAN             |
| C366           |          |                              | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R                                              | L317                |          |                              | COIL TAIT NO 622 20-120MHZ 7MM CAN                                                   |
| C367           |          |                              | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R                                              | L318                |          |                              | COIL TAIT NO 622 20-120MHZ 7MM CAN                                                   |
| C368<br>C369   |          |                              | CAPACITOR CERAMIC 0805 CHIP 3P3 +/-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P  | L319<br>L320        |          |                              | COIL TAIT NO 621 FXD 10.7MHZ 7MM CAN<br>COIL TAIT NO 622 20-120MHZ 7MM CAN           |
| C370           |          |                              | CAPACITOR CERAMIC 0805 CHIP 10P 4/0.5P                                               | L320                |          |                              | COIL TAIT NO 622 20-120MH2 7MM CAN                                                   |
| C372           |          | 015-22100-01                 | CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P                                              | L322                |          | 052-08130-15                 | COIL ANV 1.5T/3.0MM HOR 0.8MM WIRE                                                   |
|                |          |                              |                                                                                      |                     |          |                              |                                                                                      |

|   |                |     | 1                            |                                                                                  |                |          |                              | 1                                                                |                                                                                                                |   |
|---|----------------|-----|------------------------------|----------------------------------------------------------------------------------|----------------|----------|------------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---|
|   | REF            | VAR | IPN                          | DESCRIPTION                                                                      | REF            | VAR      | I IPN                        | DESCRIPTION                                                      |                                                                                                                |   |
|   |                |     |                              |                                                                                  |                |          |                              |                                                                  |                                                                                                                |   |
|   | L323           |     | 052-08130-15                 | COIL AW 1.5T/3.0MM HOR 0.8MM WIRE                                                | RV103          |          |                              | POTENTIOMETER 10K LOG DUAL PCB                                   | MTG 6MM O                                                                                                      |   |
|   | PL5            |     | 240-00020-57                 | HEADER 10 WAY 1 ROW PCB MTG                                                      | R104<br>RV104  |          | 036-15100-00<br>042-05100-06 | RESISTOR M/F 0805 CHIP 10K 5%<br>RESISTOR PRESET 10K CARBON 6MM  | -                                                                                                              |   |
|   | PL100          |     | 240-00020-59                 |                                                                                  | R105           |          | 036-16220-00                 | RESISTOR M/F 0805 CHIP 220K 5%                                   |                                                                                                                | 1 |
|   | PL101          |     | 240-00020-59                 |                                                                                  | R105           |          | 036-16390-00                 | RESISTOR M/F 0805 CHIP 390K 5%                                   | :                                                                                                              |   |
|   | PL102          |     | 240-00020-59                 | HEADER 3 WAY 1 ROW PCB MTG                                                       |                | -        |                              |                                                                  | 1.11                                                                                                           |   |
| - | PL103          |     | 240-00020-59                 |                                                                                  | £R107          | 10       | 036-15220-00                 | RESISTOR M/F 0805 CHIP 22K 5%                                    | . 1                                                                                                            |   |
|   | PL104          |     | 240-00020-59                 |                                                                                  | £R107          | 12       | 036-15220-00                 | RESISTOR M/F 0805 CHIP 22K 5%                                    |                                                                                                                |   |
|   | PL105<br>PL106 |     | 240-00020-58 240-00020-59    |                                                                                  | &R107<br>&R107 | 14<br>15 | 036-15220-00<br>036-15180-00 | RESISTOR M/F 0805 CHIP 22K 5%<br>RESISTOR M/F 0805 CHIP 18K 5%   |                                                                                                                |   |
|   | PL200          |     | 1                            | PLUG 15 WAY D RANGE WIRE WRAP PINS PNL M                                         | &R107 :        | 17       | 036-15180-00                 | RESISTOR M/F 0805 CHIP 18K 5%                                    | la la companya                                                                                                 |   |
|   |                |     |                              |                                                                                  | &R107          | 20       | 036-15220-00                 | RESISTOR M/F 0805 CHIP 22K 5%                                    |                                                                                                                |   |
|   |                |     |                              |                                                                                  | &R107          | 22       | 036-15220-00                 | RESISTOR M/F 0805 CHIP 22K 5%                                    |                                                                                                                |   |
|   | Q1             |     |                              | TRANSISTOR SHD MMBR571 NPN SOT-23 UHF LO                                         | £R107          | 24       | 036-15220-00                 | RESISTOR WF 0805 CHIP 22K 5%                                     | , i - i - i - i - i - i - i - i - i - i                                                                        |   |
|   | Q3<br>Q4       |     | 000-10008-48                 |                                                                                  | &R107<br>&R107 | 25<br>27 | 036-15180-00<br>036-15180-00 | RESISTOR M/F 0805 CHIP 18K 5%<br>RESISTOR M/F 0805 CHIP 18K 5%   | ·                                                                                                              |   |
|   | Q100           |     | 000-10008-48                 |                                                                                  | R108           | -        | 036-14820-00                 | RESISTOR M/F 0805 CHIP 8K2 5%                                    |                                                                                                                |   |
|   | Q101           |     | 000-10008-57                 |                                                                                  | LR109          | 10       | 036-15150-00                 | RESISTOR M/F 0805 CHIP 15K 5%                                    |                                                                                                                |   |
|   | Q102           |     | 000-10008-57                 | TRANSISTOR SMD BCW70/BC857 PNP SOT-23 AF                                         | &R109          | 12       | 036-15150-00                 | RESISTOR M/F 0805 CHIP 15K 5%                                    |                                                                                                                |   |
|   | Q103           |     | 000-10008-57                 |                                                                                  | &R109          | 14       | 036-10000-00                 | RESISTOR M/F 0805 CHIP ZERO OHM                                  | 1                                                                                                              |   |
|   | Q104<br>Q105   |     | 000-10008-17                 |                                                                                  | &R109<br>&R109 | 15<br>17 | 036-15150-00<br>036-15150-00 | RESISTOR M/F 0805 CHIP 15K 5%<br>RESISTOR M/F 0805 CHIP 15K 5%   | 1                                                                                                              |   |
|   | Q106           |     | 000-10008-48                 |                                                                                  | £R109          | 20       | 036-15150-00                 | RESISTOR M/F 0805 CHIP 15K 5%                                    |                                                                                                                |   |
|   | Q107           |     | 000-10008-48                 |                                                                                  | &R109          | 22       | 036-15150-00                 | RESISTOR M/F 0805 CHIP 15K 5%                                    |                                                                                                                |   |
|   | Q108           |     | 000-10008-48                 | TRANSISTOR SMD BCW60/BC848 NPN SOT-23 AF                                         | &R109          | 24       | 036-10000-00                 | RESISTOR MY 0805 CHIP ZERO OHM                                   | ·. ·                                                                                                           |   |
|   | Q109           |     | 000-10008-48                 |                                                                                  | £R109          | 25       | 036-15150-00                 | RESISTOR M/F 0805 CHIP 15K 5%                                    | t i i                                                                                                          |   |
|   | Q200<br>Q201   |     |                              | TRANSISTOR BC557B PNP TO-92 AF SMALL SIG<br>TRANSISTOR BC234 PNP TO-126 AF POWER | &R109<br>R110  | 27       | 036-15150-00                 | RESISTOR M/F 0805 CHIP 15K 5%<br>RESISTOR M/F 0805 CHIP 100K 5%  |                                                                                                                |   |
|   | Q201<br>Q202   |     | 000-00012-15                 |                                                                                  | R110<br>R111   |          | 036-16100-00                 | RESISTOR M/F 0805 CHIP 100K 5%<br>RESISTOR M/F 0805 CHIP 4K7 5%  |                                                                                                                |   |
|   | Q203           |     | 000-10008-57                 |                                                                                  | AR112          | 10       | 036-15390-00                 | RESISTOR M/F 0805 CHIP 4K/ 3%                                    | i                                                                                                              |   |
|   | Q300           |     | 000-10057-10                 | TRANSISTOR SMD MMBR571 NPN SOT-23 UHF LO                                         | &R112          | 12       | 036-15390-00                 | RESISTOR M/F 0805 CHIP 39K 5%                                    |                                                                                                                |   |
|   | Q301           |     | 000-10008-57                 |                                                                                  | &R112          | 14       | 036-15220-00                 | RESISTOR M/F 0805 CHIP 22K 5%                                    |                                                                                                                |   |
|   | Q302<br>Q303   |     | 000-10008-57                 |                                                                                  | £R112          | 15       | 036-15390-00                 | RESISTOR M/F 0805 CHIP 39K 5%                                    |                                                                                                                |   |
|   | Q304           |     | 000-10057-10<br>000-00020-18 |                                                                                  | &R112<br>&R112 | 17<br>20 | 036-15390-00<br>036-15390-00 | RESISTOR M/F 0805 CHIP 39K 5%<br>RESISTOR M/F 0805 CHIP 39K 5%   |                                                                                                                |   |
|   | Q305           |     | 000-10008-92                 |                                                                                  | 4R112          | 22       | 036-15390-00                 | RESISTOR M/F 0805 CHIP 39K 5%                                    |                                                                                                                |   |
|   | Q306           |     | 000-10009-91                 | TRANSISTOR SMD BF991 DGMOSFET                                                    | £R112          | 24       | 036-15220-00                 | RESISTOR M/F 0805 CHIP 22K 5%                                    |                                                                                                                |   |
|   | Q307           |     | 000-10008-48                 |                                                                                  | &R112          | 25       | 036-15390-00                 | RESISTOR M/F 0805 CHIP 39K 5%                                    |                                                                                                                |   |
|   | 308            |     | 000-10008-48                 |                                                                                  | &R112          | 27       | 036-15390-00                 | RESISTOR M/F 0805 CHIP 39K 5%                                    |                                                                                                                |   |
|   | Q309<br>R1     |     | 000-10008-48                 | TRANSISTOR SMD BCW60/BC848 NPN SOT 23 AF<br>RESISTOR WF 0805 CHIP 10E 5%         | · R113         |          | 036-16100-00                 | RESISTOR M/F 0805 CHIP 100K 5% RESISTOR M/F 0805 CHIP 4K7 5%     |                                                                                                                |   |
|   | R2             |     | 036-12100-00                 |                                                                                  | R114<br>R115   |          | 036-14270-00                 | RESISTOR M/F 0805 CHIP 4K7 5%                                    |                                                                                                                |   |
|   | R3             |     | 036-14100-00                 |                                                                                  | R116           |          |                              | RESISTOR M/F 0805 CHIP 100E 5%                                   |                                                                                                                |   |
|   | R4             |     | 036-17100-00                 | RESISTOR M/F 0805 CHIP 1M 5%                                                     | B117           | 1        | 036-15470-00                 | RESISTOR ME 0805 CHIP 47K 5%                                     |                                                                                                                |   |
|   | R5             |     | 036-14330-00                 |                                                                                  | R119           | 1        |                              | RESISTOR M/F 0805 CHIP 10K 5%                                    |                                                                                                                |   |
|   | R6<br>R7       |     | 036-13120-00                 |                                                                                  | R120           | 1        | 036-14390-00                 | RESISTOR M/F 0805 CHIP 3K9 5%                                    |                                                                                                                |   |
|   | R8             |     | 036-13100-00                 |                                                                                  | R121<br>&R122  | 10       | 036-14100-00<br>036-14820-00 | RESISTOR M/F 0805 CHIP 1K 5%<br>RESISTOR M/F 0805 CHIP 8K2 5%    |                                                                                                                |   |
|   | R9             |     | 036-12180-00                 |                                                                                  | &R122          | 12       | 036-14820-00                 | RESISTOR M/F 0805 CHIP 8K2 5%                                    |                                                                                                                |   |
|   | R10            |     | 036-17100-00                 |                                                                                  | &R122          | 14       | 036-14390-00                 | RESISTOR M/F 0805 CHIP 3K9 5%                                    |                                                                                                                |   |
|   | R11            |     | 036-12680-00                 |                                                                                  | &R122          | 15       | 036-14470-00                 | RESISTOR M/F 0805 CHIP 4K7 5%                                    |                                                                                                                |   |
|   | R12            |     | 036-17100-00                 |                                                                                  | 4R122          | 17       | 036-14470-00                 | RESISTOR M/F 0805 CHIP 4K7 5%                                    |                                                                                                                |   |
|   | R13            |     | 036-17100-00                 |                                                                                  | &R122<br>&R122 | 20<br>22 | 036-14820-00                 | RESISTOR M/F 0805 CHIP 8K2 5% RESISTOR M/F 0805 CHIP 8K2 5%      |                                                                                                                |   |
|   | R15            |     | 036-17100-00                 |                                                                                  | £R122          | 24       | 036-14390-00                 | RESISTOR M/F 0805 CHIP 3K2 5%                                    | in an                                                                      |   |
|   | R16            |     | 036-12220-00                 | RESISTOR M/F 0805 CHIP 22E 5%                                                    | &R122          | 25       | 036-14470-00                 | RESISTOR M/F 0805 CHIP 4K7 5%                                    | 1 - C                                                                                                          |   |
|   | R20            |     | 036-12220-00                 |                                                                                  | &R122          | 27       | 036-14470-00                 | RESISTOR WF 0805 CHIP 4K7 5%                                     |                                                                                                                |   |
|   | R21<br>R22     |     | 036-15120-00                 |                                                                                  | R123           | 1        |                              | RESISTOR M/F 0805 CHIP 6K8 5%                                    |                                                                                                                |   |
|   | R23            |     | 036-15100-00<br>036-16470-00 |                                                                                  | R124<br>R125   |          | 035-14680-00                 | RESISTOR M/F 0805 CHIP 6K8 5%                                    |                                                                                                                |   |
|   | R24            |     | 036-13100-00                 |                                                                                  | 4R126          | 10       | 036-15470-00                 | RESISTOR M/F 0805 CHIP 47K 5%                                    |                                                                                                                |   |
|   | R25            |     | 036-14100-00                 | RESISTOR M/F 0805 CHIP 1K 5%                                                     | &R126          | 12       | 036-15470-00                 | RESISTOR M/F 0805 CHIP 47K 5%                                    |                                                                                                                |   |
|   | R26            |     | 036-17100-00                 |                                                                                  | &R126          | 14       | 036-15270-00                 | RESISTOR M/F 0805 CHIP 27K 5%                                    |                                                                                                                |   |
|   | R27            |     | 036-17100-00                 |                                                                                  | &R126          | 15       | 036-15470-00                 | RESISTOR M/F 0805 CHIP 47K 5%                                    |                                                                                                                |   |
|   | R28<br>R29     |     | 036-15100-00                 |                                                                                  | &R126<br>&R126 | 17<br>20 | 036-15470-00<br>036-15470-00 | RESISTOR M/F 0805 CHIP 47K 5%                                    | ', :                                                                                                           |   |
|   | R30            |     | 036-15100-00                 |                                                                                  | LR126          | 20       | 036-15470-00                 | RESISTOR M/F 0805 CHIP 47K 5%<br>RESISTOR M/F 0805 CHIP 47K 5%   |                                                                                                                |   |
|   | R31            |     | 036-15100-00                 |                                                                                  | AR126          | 24       | 036-15270-00                 | RESISTOR M/F 0805 CHIP 27K 5%                                    |                                                                                                                |   |
|   | R32            |     | 036-16470-00                 | RESISTOR M/F 0805 CHIP 470K 5%                                                   | &R126          | 25       | 036-15470-00                 | RESISTOR M/F 0805 CHIP 47K 5%                                    | ·                                                                                                              |   |
|   | R33            |     | 036-16470-00                 |                                                                                  | LR126          | 27       | 036-15470-00                 | RESISTOR M/F 0805 CHIP 47K 5%                                    |                                                                                                                |   |
|   | R34<br>R35     |     | 036-14680-00                 |                                                                                  | 4R127          | 10       | 036-16100-00                 | RESISTOR ME 0805 CHIP 100K 5%                                    |                                                                                                                |   |
|   | H35<br>H36     |     | 036-12220-00                 |                                                                                  | &R127<br>&R127 | 12<br>14 | 036-16100-00<br>036-16330-00 | RESISTOR M/F 0805 CHIP 100K 5%<br>RESISTOR M/F 0805 CHIP 330K 5% | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                        |   |
|   | R37            |     | 036-14100-00                 |                                                                                  | &R127          | -15      | 036-16330-00                 | RESISTOR M/F 0805 CHIP 330K 5%                                   |                                                                                                                |   |
|   | A38            |     | 036-15150-00                 | RESISTOR MF 0805 CHIP 15K 5%                                                     | &R127          | 17       | 036-16100-00                 | RESISTOR M/F 0805 CHIP 100K 5%                                   |                                                                                                                |   |
|   | R39            |     | 036-16100-00                 |                                                                                  | &R127          | 20       | 036-16100-00                 | RESISTOR M/F 0805 CHIP 100K 5%                                   |                                                                                                                |   |
|   | R40            |     | 036-12220-00                 |                                                                                  | &R127          | 22       | 036-16100-00                 | RESISTOR M/F 0805 CHIP 100K 5%                                   |                                                                                                                |   |
|   | R41<br>R42     |     | 036-12100-00                 |                                                                                  | &R127          | 24<br>25 | 036-16330-00                 | RESISTOR M/F 0805 CHIP 330K 5%                                   |                                                                                                                |   |
|   | R43            |     | 036-12560-00                 |                                                                                  | 4R127<br>4R127 | 25       | 036-16100-00<br>036-16100-00 | RESISTOR M/F 0805 CHIP 100K 5%<br>RESISTOR M/F 0805 CHIP 100K 5% |                                                                                                                |   |
|   | R44            |     | 036-13180-00                 |                                                                                  | R128           | -        |                              | RESISTOR M/F 0805 CHIP 560E 5%                                   |                                                                                                                |   |
|   | R45            |     | 036-12270-00                 |                                                                                  | R129           |          | 036-14100-00                 | RESISTOR M/F 0805 CHIP 1K 5%                                     | er de la composition | 1 |
|   | R46            |     | 036-13180-00                 |                                                                                  | R130           |          |                              | RESISTOR WF 0805 CHIP 2K2 5%                                     |                                                                                                                |   |
|   | R47<br>R48     |     | 036-16100-00                 | · · · · · · · · · · · · · · · · · · ·                                            | R131           | 1        | 036-14100-00                 | RESISTOR M/F 0805 CHIP 1K 5%                                     | 1                                                                                                              |   |
|   | R49            |     | 036-12220-00                 |                                                                                  | R132           | 1        | 036-14680-00<br>036-14120-00 | RESISTOR M/F 0805 CHIP 6K8 5%<br>RESISTOR M/F 0805 CHIP 1K2 5%   | 1.1.1                                                                                                          |   |
|   | R50            |     | 036-14100-00                 |                                                                                  | R134           |          | 036-15390-00                 | RESISTOR M/F 0805 CHIP 1K2 3%                                    |                                                                                                                |   |
|   | R100           |     | 036-15270-00                 | RESISTOR M/F 0805 CHIP 27K 5%                                                    | R135           |          |                              | RESISTOR M/F 0805 CHIP 8K2 5%                                    | ; 1                                                                                                            |   |
|   | RV100          |     | 040-05100-21                 |                                                                                  | R136           | 1        |                              | RESISTOR M/F 0805 CHIP 47K 5%                                    | • 1                                                                                                            |   |
|   | RL100<br>R101  |     | 237-00010-22<br>036-13100-00 |                                                                                  | R137           |          |                              | RESISTOR M/F 0805 CHIP 47K 5%                                    | 1                                                                                                              |   |
|   | RV101          |     | 042-05100-00                 |                                                                                  | R138<br>R139   | 1        |                              | RESISTOR M/F 0805 CHIP 4K7 5%<br>RESISTOR M/F 0805 CHIP 4K7 5%   | :<br>                                                                                                          |   |
|   | R102           |     | 036-14220-00                 |                                                                                  | R140           |          | 036-14820-00                 | RESISTOR M/F 0805 CHIP 4K7 5%                                    | a di second                                                                                                    |   |
|   | RV102          |     | 040-05100-21                 | POTENTIOMER 10K LIN VERT PCB MTG 15MM SL                                         | R141           |          |                              | RESISTOR M/F 0805 CHIP 47K 5%                                    | (                                                                                                              |   |
|   | R103           |     | 036-15220-00                 | RESISTOR M/F 0805 CHIP 22K 5%                                                    | R142           |          |                              | RESISTOR M/F 0805 CHIP 47K 5%                                    | , i                                                                                                            |   |
|   |                |     |                              |                                                                                  |                |          |                              |                                                                  | : · · · ·                                                                                                      |   |

1

· · · · · · ·

,----, I

; ; ;

ייין ו ו י

· · · · · ·

513) 1

مىر مەرىكە ر .

~ · · · ·

· · · ·

. .

<u>,</u> 1

1 -

| REF            | VAR      | IPN                          | DESCRIPTION                                                         | <br><u>REF</u>   | VAR      | IPN                          | DESCRIPTION                                                                          |
|----------------|----------|------------------------------|---------------------------------------------------------------------|------------------|----------|------------------------------|--------------------------------------------------------------------------------------|
| R143           |          | 036-15470-00                 |                                                                     |                  |          |                              |                                                                                      |
| R144           |          | 036-15470-00                 |                                                                     | &R346<br>&R346   | 10<br>12 | 036-15560-00<br>036-15560-00 |                                                                                      |
| R145           |          | 036-11470-00                 |                                                                     | £R346            | 14       | 036-15150-00                 |                                                                                      |
| R146           |          | 036-14100-00                 |                                                                     | &R346            | 15       | 036-15820-00                 |                                                                                      |
| R147<br>R148   |          | 036-13150-00<br>036-14100-00 |                                                                     | 28346            | 17       | 036-15820-00                 |                                                                                      |
| R149           |          | 036-13100-00                 |                                                                     | &R346<br>&R346   | 20<br>22 | 036-15560-00                 |                                                                                      |
| R150           |          | 036-14100-00                 |                                                                     | &R346            | 24       | 036-15150-00                 |                                                                                      |
| R151           |          | 036-14470-00                 |                                                                     | LR346            | 25       | 036-15820-00                 |                                                                                      |
| &R152<br>&R152 | 10<br>12 | 036-14470-00                 |                                                                     | LR346            | 27       | 036-15820-00                 |                                                                                      |
| &R152          | 14       | 036-14470-00                 |                                                                     | R347<br>R348     |          | 036-13220-00                 | RESISTOR M/F 0805 CHIP 220E 5%<br>RESISTOR M/F 0805 CHIP 10E 5%                      |
| &R152          | 15       | 036-14330-00                 | RESISTOR M/F 0805 CHIP 3K3 5%                                       | R349             |          | 036-15180-00                 | RESISTOR M/F 0805 CHIP 18K 5%                                                        |
| &R152          | 17       | 036-14330-00                 |                                                                     | R350             |          | 036-15100-00                 | RESISTOR M/F 0805 CHIP 10K 5%                                                        |
| &R152<br>&R152 | 20<br>22 | 036-14470-00                 | · · · · · · · · · · · · · · · · · · ·                               | R351<br>R352     |          | 036-16390-00                 | RESISTOR WF 0805 CHIP 390K 5%<br>RESISTOR WF 0805 CHIP 1M 5%                         |
| &R152          | 24       | 036-14470-00                 |                                                                     | R352             |          | 036-13180-00                 | RESISTOR M/F 0805 CHIP 180E 5%                                                       |
| &R152          | 25       | 036-14330-00                 |                                                                     | R354             |          | 036-14330-00                 | RESISTOR M/F 0805 CHIP 3K3 5%                                                        |
| &R152<br>R153  | 27       | 036-14330-00<br>036-15100-00 |                                                                     | R355             |          | 036-12470-00                 | RESISTOR WF 0805 CHIP 47E 5%                                                         |
| R154           |          | 036-13100-00                 |                                                                     | R356<br>R357     |          | 036-15150-00<br>036-14100-00 | RESISTOR M/F 0805 CHIP 15K 5%<br>RESISTOR M/F 0805 CHIP 1K 5%                        |
| R155           |          | 036-15120-00                 |                                                                     | R358             |          | 036-14330-00                 | RESISTOR M/F 0805 CHIP 3K3 5%                                                        |
| R156           |          | 036-14560-00                 |                                                                     | R359             |          | 036-15220-00                 | RESISTOR WF 0805 CHIP 22K 5%                                                         |
| R157<br>R158   |          | 036-16220-00 036-14470-00    |                                                                     | R360             |          | 036-16100-00                 | RESISTOR M/F 0005 CHIP 100K 5%                                                       |
| R159           |          | 036-14470-00                 |                                                                     | R361<br>R362     |          | 036-14270-00                 | RESISTOR M/F 0805 CHIP 2K7 5%<br>RESISTOR M/F 0805 CHIP 1K 5%                        |
| R160           |          | 036-14680-00                 |                                                                     | R363             |          |                              | RESISTOR M/F 0005 CHIP ZERO OHM                                                      |
| A161           |          | 036-16100-00                 |                                                                     | R364             |          | 036-16100-00                 | RESISTOR M/F 0805 CHIP 100K 5%                                                       |
| R162<br>R163   |          | 036-15150-00                 |                                                                     | R365<br>R366     |          | 036-15100-00                 | RESISTOR M/F 0805 CHIP 10K 5%                                                        |
| R164           |          | 036-13470-00                 | -                                                                   | R367             |          |                              | RESISTOR M/F 0805 CHIP 47K 5%<br>RESISTOR M/F 0805 CHIP 47K 5%                       |
| F1165          |          | 036-15470-00                 | RESISTOR M/F 0805 CHIP 47K 5%                                       | R368             |          |                              | RESISTOR MF 0805 CHIP 12K 5%                                                         |
| R200           |          | 036-12330-00                 |                                                                     | R369             |          | 045-05100-01                 | RESISTOR NTC 10K 20% 5MM DISC                                                        |
| R201<br>R203   |          | 036-14470-00                 |                                                                     | R370             |          |                              | RESISTOR WF 0805 CHIP ZERO OHM                                                       |
| R204           |          | 036-14100-00                 |                                                                     | R371<br>R372     |          |                              | RESISTOR WF 0805 CHIP 10K 5%                                                         |
| R205           |          | 032-31100-00                 |                                                                     | R372             |          |                              | RESISTOR M/F 0805 CHIP 47E 5%<br>RESISTOR M/F 0805 CHIP ZERO OHM                     |
| R206           |          | 036-14680-00                 | RESISTOR M/F 0805 CHIP 6K8 5%                                       | R374             |          |                              | RESISTOR M/F 0805 CHIP 390E 5%                                                       |
| R207           |          | 036-15100-00                 |                                                                     | R375             |          |                              | RESISTOR WF 0805 CHIP 10K 5%                                                         |
| R208<br>R209   |          | 032-31100-00                 |                                                                     | R376             |          |                              | RESISTOR M/F 0805 CHIP 820E 5%                                                       |
| R210           |          | 036-12330-00                 | RESISTOR M/F 0805 CHIP 33E 5%                                       | R378<br>R379     |          |                              | RESISTOR M/F 0805 CHIP 2K2 5%<br>RESISTOR NTC 10K 20% 5MM DISC                       |
| R212           |          | 036-12100-00                 |                                                                     | R380             |          |                              | RESISTOR M/F 0805 CHIP 10E 5%                                                        |
| R213           |          | 036-15150-00                 | RESISTOR M/F 0805 CHIP 15K 5%                                       | R381             |          |                              | RESISTOR M/F 0805 CHIP 10E 5%                                                        |
| R214<br>R215   |          | 036-16100-00                 | RESISTOR MF 0805 CHIP 100K 5%                                       |                  |          | <b>.</b>                     |                                                                                      |
| R216           |          |                              | RESISTOR M/F 0805 CHIP 56K 5%<br>RESISTOR M/F 0805 CHIP 1K5 5%      | SK1<br>SW100     |          |                              | SOCKET 10 WAY 1ROW PCB MTG TOP ENTRY                                                 |
| R217           |          | 036-13470-00                 |                                                                     | 34100            |          | 230-00010-30                 | SWITCH TOGGLE SPDT RT ANGLE PCB MT PARAL                                             |
| RV300          |          | 042-04220-06                 |                                                                     | T100             |          | 053-00010-17                 | TRANSFORMER T4030 LINE MATCH POT CORE                                                |
| R301           |          |                              | RESISTOR WF 0805 CHIP 10K 5%                                        | T200             |          | 050-00016-50                 | COIL TAIT NO 650 455KHZ 5.6MM CAN                                                    |
| RV301<br>R302  |          |                              | RESISTOR PRESET 2K2 CARBON 6MM FLAT<br>RESISTOR M/F 0805 CHIP 1K 5% | ~ ~ ~ ~          |          |                              |                                                                                      |
| R303           |          |                              | RESISTOR M/F 0805 CHIP 3K9 5%                                       | X300<br>&XF300   | 10       |                              | CRYSTAL 44.545MHZ SPEC TE/22 HC45-U<br>FILTER CRYSTAL 45MHZ 15KHZ B/W 4 POLE 2       |
| R304           |          | 036-14220-00                 | RESISTOR M/F 0805 CHIP 2K2 5%                                       | \$XF300          | 12       |                              | FILTER CRYSTAL 45MHZ 15KHZ BAW 4 POLE 2                                              |
| R305           |          |                              | RESISTOR MF 0805 CHIP 10E 5%                                        | £XF300           | 14       | 276-00010-59                 | FILTER CRYSTAL 45MHZ 30KHZ B/W 4 POLE 2                                              |
| R306<br>R307   |          |                              | RESISTOR M/F 0805 CHIP 39E 5%                                       | LXF300           | 15       |                              | FILTER CRYSTAL 45MHZ 7.5K BW 4POLE 45N7.                                             |
| FI308          |          |                              | RESISTOR M/F 0805 CHIP 1M 5%                                        | &XF300<br>&XF300 | 17<br>20 |                              | FILTER CRYSTAL 45MHZ 7.5K BW 4POLE 45N7.<br>FILTER CRYSTAL 45MHZ 15KHZ B/W 4 POLE 2  |
| R309           |          | 036-10000-00                 | RESISTOR M/F 0805 CHIP ZERO OHM                                     | 4XF300           | 22       |                              | FILTER CRYSTAL 45MHZ 15KHZ B/W 4 POLE 2                                              |
| R310           |          |                              | RESISTOR M/F 0805 CHIP 1M 5%                                        | LXF300           | 24       |                              | FILTER CRYSTAL 45MHZ 30KHZ BAW 4 POLE 2                                              |
| R311<br>R312   |          |                              | RESISTOR WF 0805 CHIP 1K 5%<br>RESISTOR WF 0805 CHIP 3K9 5%         | &XF300           | 25       |                              | FILTER CRYSTAL 45MHZ 7.5K BW 4POLE 45N7.                                             |
| R313           |          |                              | RESISTOR WF 0805 CHIP 2K2 5%                                        | £XF300<br>£XF301 | 27<br>10 |                              | FILTER CRYSTAL 45MHZ 7.5K BW 4POLE 45N7.<br>FILTER CRYSTAL 45MHZ 14KHZ B/W 2 POLE 45 |
| R314           |          |                              | RESISTOR M/F 0805 CHIP 10E 5%                                       | &XF301           | 12       |                              | FILTER CRYSTAL 45MHZ 14KHZ B/W 2 POLE 45                                             |
| R315           |          |                              | RESISTOR M/F 0805 CHIP 33E 5%                                       | &XF301           | 14       |                              | FILTER CRYSTAL 45MHZ 30KHZ BW 2 POLE 45                                              |
| R316<br>R317   |          |                              | RESISTOR M/F 0805 CHIP 180E 5%<br>RESISTOR M/F 0805 CHIP 470E 5%    | £XF301           | 15       |                              | FILTER CRYSTAL 45MHZ 7.5KHZ BW 2POLE 45                                              |
| R318           |          |                              | RESISTOR M/F 0805 CHIP 1/0E 5%                                      | &XF301<br>&XF301 | 17<br>20 |                              | FILTER CRYSTAL 45MHZ 7.5KHZ B/W 2POLE 45<br>FILTER CRYSTAL 45MHZ 14KHZ B/W 2 POLE 45 |
| R319           |          | 036-13470-00                 | RESISTOR M/F 0805 CHIP 470E 5%                                      | EXF301           | 20       |                              | FILTER CRYSTAL 45MHZ 14KHZ BW 2 POLE 45<br>FILTER CRYSTAL 45MHZ 14KHZ BW 2 POLE 45   |
| R320           |          |                              | RESISTOR W/F 0805 CHIP 180E 5%                                      | <b>AXF301</b>    | 24       |                              | FILTER CRYSTAL 45MHZ 30KHZ B/W 2 POLE 45                                             |
| R321<br>R322   |          |                              | RESISTOR M/F 0805 CHIP 27E 5%                                       | &XF301           | 25       |                              | FILTER CRYSTAL 45MHZ 7.5KHZ BW 2POLE 45                                              |
| R322           |          |                              | RESISTOR M/F 0805 CHIP 180E 5%<br>RESISTOR M/F 0805 CHIP 47E 5%     | &XF301<br>&XF302 | 27<br>10 |                              | FILTER CRYSTAL 45MHZ 7.5KHZ BW 2POLE 45                                              |
| A324           |          |                              | RESISTOR M/F 0805 CHIP 39E 5%                                       | LXF302           | 10       |                              | FILTER CERAMIC 455KHZ 15KHZ B/W CFW455E<br>FILTER CERAMIC 455KHZ 15KHZ B/W CFW455E   |
| R325           |          |                              | RESISTOR WF 0805 CHIP 10E 5%                                        | LXF302           | 14       |                              | FILTER CERAMIC 455KHZ 30KHZ BW SFH455B                                               |
| R326<br>R327   |          |                              | RESISTOR M/F 0805 CHIP 10E 5%<br>RESISTOR M/F 0805 CHIP 2K7 5%      | &XF302           | 15       |                              | FILTER CERAMIC 455KHZ 9KHZ 8/W CFW455G                                               |
| R328           |          |                              | RESISTOR WF 0805 CHIP ZK7 5%                                        | &XF302           | 17       |                              | FILTER CERAMIC 455KHZ 9KHZ BAW CFW455G                                               |
| R329           |          |                              | RESISTOR M/F 0805 CHIP 3K3 5%                                       | &XF302<br>&XF302 | 20<br>22 |                              | FILTER CERAMIC 455KHZ 15KHZ B/W CFW455E<br>FILTER CERAMIC 455KHZ 15KHZ B/W CFW455E   |
| R330           |          | 036-14470-00                 | RESISTOR M/F 0805 CHIP 4K7 5%                                       | &XF302           | 24       |                              | FILTER CERAMIC 455KHZ 30KHZ BW SFH455B                                               |
| R331           |          |                              | RESISTOR WF 0805 CHIP 47E 5%                                        | &XF302           | 25       | 276-00010-13                 | FILTER CERAMIC 455KHZ 9KHZ B/W CFW455G                                               |
| R332<br>R333   |          |                              | RESISTOR M/F 0805 CHIP 10K 5%<br>RESISTOR M/F 0805 CHIP 3K9 5%      | £XF302           | 27       | 276-00010-13                 | FILTER CERAMIC 455KHZ 9KHZ B/W CFW455G                                               |
| R334           |          |                              | RESISTOR M/F 0805 CHIP 3K9 5%                                       |                  |          |                              |                                                                                      |
| R335           |          |                              | RESISTOR M/F 0805 CHIP 10K 5%                                       |                  |          |                              |                                                                                      |
| R336           |          | 36-15100-00                  | RESISTOR M/F 0805 CHIP 10K 5%                                       |                  |          |                              |                                                                                      |
| R337<br>R338   |          |                              | RESISTOR WF 0805 CNIP 22K 5%                                        |                  |          |                              |                                                                                      |
| R339           |          |                              | RESISTOR M/F 0805 CHIP 330E 5%<br>RESISTOR NTC 150E 0.5W 5MM DISC   |                  |          |                              |                                                                                      |
| FI340          |          |                              | RESISTOR M/F 0805 CHIP 470E 5%                                      |                  |          |                              |                                                                                      |
| R341           |          | 36-14100-00                  | RESISTOR M/F 0805 CHIP 1K 5%                                        |                  |          |                              |                                                                                      |
| R342<br>R343   |          |                              | RESISTOR MF 0805 CHIP 47E 5%                                        |                  |          |                              |                                                                                      |
| H343<br>R344   |          |                              | RESISTOR M/F 0805 CHIP 1K 5%<br>RESISTOR M/F 0805 CHIP 10K 5%       |                  |          |                              |                                                                                      |
| R345           |          |                              | RESISTOR M/F 0805 CHIP 150K 5%                                      |                  |          |                              | ·                                                                                    |
|                |          |                              |                                                                     |                  |          |                              |                                                                                      |

# T885 VCO PCB PARTS

|               | 1        |                              |                                                                                                                | T885 VCO | PCB          | PAR      | TS                                      | 1             |                                          |          |                |         |
|---------------|----------|------------------------------|----------------------------------------------------------------------------------------------------------------|----------|--------------|----------|-----------------------------------------|---------------|------------------------------------------|----------|----------------|---------|
|               |          | ÷.,                          | the second s | A        |              | ·        |                                         | 14            |                                          |          |                |         |
|               |          |                              | 이 이 이 문제 문제                                                                                                    |          | •            |          |                                         | 10 1          |                                          |          |                |         |
| REF           | VAR      | IPN                          | DESCRIPTION                                                                                                    |          | REF          | VAR      | IPN                                     |               | DESCRIPTION                              |          |                |         |
| &C1           | 10       | 015-21220-0                  | CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0.25P                                                                       |          |              | 5 - A    |                                         |               |                                          |          | 1              |         |
| AC1           | 12       | 015-21220-01                 |                                                                                                                |          | R2<br>R3     |          | 036-14100-00<br>036-13100-00            |               | M/F 0805 CHIP 1K<br>M/F 0805 CHIP 10     |          |                |         |
| &C1           | 14       | 015-21220-01                 |                                                                                                                |          | R4           |          | 036-12220-00                            |               | M/F 0805 CHIP 22                         |          | • •            |         |
| &C1<br>&C1    | 15<br>17 | 015-21220-01                 |                                                                                                                |          | R5<br>R6     | ;        | 036-12270-00                            |               | M/F 0805 CHIP 270                        | ,        | :<br>          | 2       |
| &C1           | 20       | 015-21180-01                 |                                                                                                                |          | A0<br>87     |          | 036-12680-00<br>036-14100-00            |               | M/F 0805 CHIP 681<br>M/F 0805 CHIP 1K    |          |                |         |
| &C1           | 22       | 015-21180-01                 |                                                                                                                |          | R8           | di e     | 036-12220-00                            |               | M/F 0805 CHIP 221                        |          | i .            |         |
| &C1<br>&C1    | 24<br>25 | 015-21180-01<br>015-21180-01 |                                                                                                                | 100 C    | R9           |          | 036-14270-00                            |               | M/F 0805 CHIP 2K                         |          | 1              |         |
| AC1           | 27       | 015-21180-01                 |                                                                                                                |          | R10<br>R11   | · 1      | 036-14120-00<br>036-13150-00            |               | M/F 0805 CHIP 1K                         |          | : :            |         |
| C2            |          | 025-08100-02                 | CAPACITOR TANT BEAD 10M 10% 16V                                                                                |          | R12          | 1        | 036-12100-00                            |               | M/F 0805 CHIP 108                        |          | ۱., I          |         |
| C3<br>C4      |          | 015-24100-08<br>015-21100-01 |                                                                                                                |          | R13          | ÷        | 036-12390-00                            |               | M/F 0805 CHIP 396                        |          |                |         |
| C5            |          | 015-06100-08                 |                                                                                                                |          | R14<br>R15   | !        | 036-13330-00<br>036-14180-00            |               | M/F 0805 CHIP 330<br>M/F 0805 CHIP 1KE   |          | 1              | f.      |
| C6            |          | 028-02100-08                 |                                                                                                                |          | R16          | :        | 036-13470-00                            |               | M/F 0805 CHIP 470                        |          | ٠              | :       |
| &C7<br>&C7    | 10<br>12 | 015-21820-01<br>015-21820-01 |                                                                                                                |          | R17          | l.       | 036-14120-00                            |               | M/F 0805 CHIP 1K2                        |          |                |         |
| &C7           | 14       | 015-21820-01                 |                                                                                                                |          | R18<br>R19   | i.       | 036-12820-00                            |               | M/F 0805 CHIP 828                        |          |                |         |
| LC7           | 15       | 015-21820-01                 |                                                                                                                |          | R20          |          | 036-12180-00                            |               | M/F 0805 CHIP 18E                        |          | · .            |         |
| &C7           | 17       | 015-21820-01                 |                                                                                                                |          | R21          |          | 036-13270-00                            |               | M/F 0805 CHIP 270                        |          |                |         |
| . &C7<br>&C7  | 20<br>22 | 015-21470-01<br>015-21470-01 |                                                                                                                |          | R22<br>R23   | ÷.,      | 036-14180-00                            |               | M/F 0805 CHIP 1KE                        |          |                |         |
| LC7           | 24       | 015-21470-01                 |                                                                                                                |          | R23          |          | 036-12270-00                            |               | M/F 0805 CHIP 27E<br>M/F 0805 CHIP 6KE   |          | ·. · ·         |         |
| &C7           | 25       | 015-21470-01                 |                                                                                                                |          | R25          |          | 036-13470-00                            |               | M/F 0805 CHIP 470                        |          |                |         |
| &C7<br>&C8    | 27<br>10 | 015-21470-01                 |                                                                                                                |          | R26          |          | 036-14100-00                            |               | M/F 0805 CHIP 1K                         |          | :<br>:         |         |
| 4C8           | 10       | 015-22330-01<br>015-22330-01 |                                                                                                                |          | <b>R2</b> 7  |          | 036-12470-00                            | RESISTOR      | M/F 0805 CHIP 47E                        | 5%       |                | 1       |
| \$C8          | 14       | 015-22330-01                 | CAPACITOR CERAMIC 0805 CHIP 33P 5% NPO 5                                                                       |          | &TL1         | 10       | 051-00005-41                            | RESONATO      | R TAIT NO 541 39                         | 5-440MHZ | T855/          | 7       |
| 4C8           | 15       | 015-22330-01                 |                                                                                                                |          | ATL1         | 12       | 051-00005-41                            | RESONATO      | R TAIT NO 541 395                        | 5-440MHZ | T855/          | 7       |
| &C8<br>&C8    | 17<br>20 | 015-22330-01<br>015-22270-01 |                                                                                                                |          | ATL1<br>ATL1 | 14<br>15 | 051-00005-41                            |               | R TAIT NO 541 39                         |          |                |         |
| AC8           | 22       | 015-22270-01                 |                                                                                                                |          | ATL1         | 15<br>17 | 051-00005-41                            |               | R TAIT NO 541 39:<br>R TAIT NO 541 39:   |          |                |         |
| &C8           | 24       | 015-22270-01                 |                                                                                                                |          | ATL1         | 20       | 051-00005-61                            |               | TR 400-457.5MHZ T8                       |          |                | •       |
| 4C8<br>4C8    | 25<br>27 | 015-22270-01<br>015-22270-01 |                                                                                                                |          | &TL1         | 22       | 051-00005-61                            |               | TR 400-457.5MHZ T8                       |          | 1              | 1       |
| C9            | 27       | 015-23120-01                 |                                                                                                                |          | &TL1<br>&TL1 | 24<br>25 | 051-00005-61<br>051-00005-61            |               | TR 400-457.5MHZ T8<br>TR 400-457.5MHZ T8 |          |                |         |
| C10           |          | 015-21180-01                 |                                                                                                                |          | ATLI         | 27       | 051-00005-61                            |               | TR 400-457.5MHZ T8                       |          |                |         |
| C11<br>C12    |          | 015-21330-01                 |                                                                                                                |          |              | • :      |                                         |               | :                                        |          | 1              |         |
| C12           |          | 015-22820-01<br>015-23120-01 |                                                                                                                |          |              |          |                                         | BEAD FERF     | NTE 7D 1.9"0.9"3.8                       | MM STAC  | K POL          | .E      |
| C14           |          | 015-23100-01                 |                                                                                                                |          |              |          |                                         | LEAD OF L     | •                                        |          |                |         |
| C17           |          | 015-23120-01                 |                                                                                                                | н.<br>-  |              |          | 220-01184-01                            | PRINTED C     | ROUT BOARD TEE                           | o vco    |                | e'      |
| C18<br>C19    |          | 015-22560-01<br>015-22560-01 |                                                                                                                |          |              |          | A 40 0000F 00                           |               |                                          | -        | ;              |         |
| C20           |          | 015-23470-08                 |                                                                                                                |          |              |          |                                         | 2, PLUG, 32 V | VAY, 1 ROW PC MT                         | G        | 1              |         |
| &C21          | 10       | 015-22120-01                 |                                                                                                                |          |              |          |                                         |               |                                          |          | 1              |         |
| &C21<br>&C21  | 12<br>14 | 015-22120-01<br>015-22120-01 |                                                                                                                |          |              |          |                                         |               |                                          |          |                |         |
| &C21          | 15       | 015-22120-01                 |                                                                                                                |          |              |          |                                         |               |                                          |          |                |         |
| &C21          | 17       | 015-22120-01                 | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                                                       |          |              |          |                                         |               |                                          |          |                | :       |
| &C21<br>&C21  | 20<br>22 | 015-22100-01                 |                                                                                                                |          |              |          |                                         |               |                                          |          | i ,            |         |
| &C21          | 24       | 015-22100-01                 |                                                                                                                |          |              |          |                                         |               | :                                        |          |                |         |
| &C21          | 25       |                              | CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P                                                                        |          |              |          |                                         | 1             |                                          |          |                |         |
| &C21          | 27       |                              | CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P                                                                        |          |              |          |                                         |               | · .                                      |          |                |         |
| C22<br>C23    |          |                              | CARACITOR CERAMIC 0805 CHIP 6P8 +/-0.25P<br>CAPACITOR CERAMIC 0805 CHIP 4P7 +/-0.25P                           |          |              |          |                                         |               |                                          |          |                |         |
| C24           |          |                              | CAPACITOR CERAMIC 0805 CHIP 4P7 +/-0.25P                                                                       |          | 1            | ·        |                                         |               |                                          |          |                |         |
| C26           |          |                              | CAPACITOR CERAMIC 0805 CHIP 56P 5% NPO 5                                                                       |          |              |          |                                         |               |                                          |          | i              | :.      |
| C27<br>&C28   | 10       |                              | CAPACITOR CERAMIC 1206 CHIP 47N 10% X7R<br>CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                            |          |              |          |                                         |               |                                          |          |                |         |
| - &C28        | 12       |                              | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                                                       |          |              | 1        | 1.0                                     |               |                                          |          |                |         |
| &C28          | 14       |                              | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                                                       |          |              |          |                                         |               |                                          |          |                |         |
| &C28<br>&C28  | 15<br>17 |                              | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5<br>CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                           |          |              |          |                                         |               |                                          |          | 1990 - 19<br>1 | ·.      |
| &C28          | 20       |                              | CAPACITOR CERAMIC 0805 CHIP 12P 5% NPO 5                                                                       |          |              |          |                                         |               | e e tra e e                              |          | i .            |         |
| &C28          | 22       |                              | CAPACITOR CERAMIC 0805 CHIP 10P +/-0 5P                                                                        |          |              |          |                                         |               |                                          |          | :              | а<br>1  |
| &C28.<br>&C28 | 24<br>25 |                              | CAPACITOR CERAMIC 0805 CHIP 10P +/-0 5P<br>CAPACITOR CERAMIC 0805 CHIP 10P +/-0.5P                             |          |              |          |                                         |               |                                          |          |                |         |
| &C28          | 27       |                              | CAPACITOR CERAMIC 0805 CHIP 10P #-0.5P                                                                         |          |              |          |                                         | 1             |                                          |          | ÷ 1            | i.      |
| C29           |          |                              | CAPACITOR CERAMIC 0805 CHIP 3P3 +/-0.25P                                                                       |          |              |          |                                         |               |                                          |          |                |         |
| C30           |          | 015-21220-01                 | CAPACITOR CERAMIC 0805 CHIP 2P2 +/-0 25P                                                                       |          |              |          |                                         | 1.2           |                                          |          | ·              | 2       |
| D1            |          | 001-00012-63                 | DIODE VARICAP BB809                                                                                            |          |              |          | 1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |               |                                          |          | '. ·           |         |
| D2            |          |                              | DIODE VARICAP BB809                                                                                            |          |              | 1        |                                         |               | :                                        |          |                |         |
| LT            |          | 055 00021 60                 |                                                                                                                |          |              | 1        |                                         |               |                                          |          | 1              | :<br>:. |
| L2            |          |                              | INDUCTOR FIXED 330NH 6.6X2.7MM AXIAL NON<br>INDUCTOR FIXED 330NH 6.6X2.7MM AXIAL NON                           |          |              | ÷        |                                         |               |                                          |          |                |         |
| L3            |          | 056-00021-60                 | INDUCTOR FIXED 330NH 6.6X2.7MM AXIAL NON                                                                       | l.       |              | 1        |                                         |               |                                          |          | 100 - 1<br>1   |         |
| L4<br>L5      |          |                              | INDUCTOR FIXED 330NH 6.6X2.7MM AXIAL NON                                                                       |          |              | 1        |                                         |               |                                          |          |                |         |
| . L5<br>L6    |          |                              | COIL AW 2.5T/3.0MM HOR 0.8MM WIRE<br>INDUCTOR FIXED 330NH 6.6X2.7MM AXIAL NON                                  |          |              |          |                                         |               |                                          |          |                |         |
| L7            |          | 052-08125-15                 | COIL A/W 1.5T/2.5MM HOR 0.8MM WIRE                                                                             |          |              | I        |                                         | 1.1           |                                          |          | :              |         |
| L8            |          |                              | COIL AW 1.5T/2.5MM HOR 0.8MM WIRE                                                                              | 1        |              |          |                                         |               | · · · · · · · · · · · · · · · · · · ·    |          | ;              |         |
| L9<br>L10     |          |                              | INDUCTOR FIXED 330NH 6.6X2.7MM AXIAL NON                                                                       |          |              | - 1      |                                         |               |                                          |          |                |         |
| 210           |          | JJC-UD130-15                 | COIL AW 1.5T/3.0MM HOR 0.8MM WIRE                                                                              |          |              | i        |                                         |               |                                          |          |                | 1.      |
| Q1            |          | 000-10095-10                 | TRANSISTOR SMD MMBR951 NPN UHF SOT-23                                                                          |          |              |          |                                         |               |                                          |          | ÷              | 4       |
| Q2<br>Q3      |          | 000-10057-10                 | TRANSISTOR SMD MMBR571 NPN SOT-23 UHF LO                                                                       |          |              |          |                                         | - 1<br>       |                                          |          |                | 4       |
| Q4            |          |                              | TRANSISTOR SMD MMBR571 NPN SOT-23 UHF LO<br>TRANSISTOR SMD MMBR571 NPN SOT-23 UHF LO                           |          |              | :        |                                         |               | - 1                                      |          |                |         |
| Q5            |          | 000-00032-61                 | TRANSISTOR MRF571 NPN UHF 10V 10MA 1 WAT                                                                       | 1        |              |          |                                         |               |                                          |          |                |         |
| Q6            |          |                              | TRANSISTOR SMD BCW70/BC857 PNP SOT-23 AF                                                                       |          |              | 1        |                                         | 1             | I.                                       | 1        |                |         |
| B1            |          | 036-14390-00                 | RESISTOR M/F 0805 CHIP 3K9 5%                                                                                  |          |              | ÷ .      |                                         |               | · · · · ·                                |          | ( -            |         |
|               |          |                              |                                                                                                                |          |              | ÷        |                                         |               |                                          |          |                | i.      |
|               |          |                              |                                                                                                                |          |              | ÷        |                                         |               |                                          |          |                |         |
|               |          |                              |                                                                                                                |          |              |          |                                         |               |                                          |          |                | 1.00    |

10.7

## **T800 EPROM PCB PARTS**

~ ~

··-- • 1

~\_\_\_\_

-------

**،** ب

| REF       | IPN          | DESCRIPTION                              |
|-----------|--------------|------------------------------------------|
|           |              |                                          |
| C1        | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |
| C2        | 015-24100-08 |                                          |
| cs        | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5 |
| C4        | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |
| C5        | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |
| C6        | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5 |
| C7        | 015-06100-08 | CAPACITOR CERAMIC 1206 CHIP 100N 10% X7R |
| CB        | 025-08100-02 | CAPACITOR TANT BEAD 10M 10% 16V          |
|           |              |                                          |
| D1        | 001-10000-70 | DIODE SMD BAV70 DUAL SWITCH SOT-23 COMMO |
| D2        | 001-10000-70 | DIODE SMD BAV70 DUAL SWITCH SOT-23 COMMO |
| D3 ·      | 001-10000-70 | DIODE SMD BAV70 DUAL SWITCH SOT-23 COMMO |
|           |              |                                          |
| IC1       | 002-00018-04 |                                          |
| IC1       | 240-04020-35 | SOCKET 28 PIN DIL INTEGRATED CCT LOW PRO |
| -         |              |                                          |
| PL1       | 240-00020-57 | HEADER 10 WAY 1 ROW PCB MTG              |
| R1        | 036-15100-00 | RESISTOR WE 0805 CHIP 10K 5%             |
| <b>B2</b> | 036-15100-00 | RESISTOR M/F 0605 CHIP 10K 5%            |
| 83        | 036-15100-00 |                                          |
| R4        | 036-15100-00 | RESISTOR M/F 0805 CHIP 10K 5%            |
| R5        | 036-15100-00 | RESISTOR M/F 0805 CHIP 10K 5%            |
| R6        | 036-15100-00 | RESISTOR M/F 0805 CHIP 10K 5%            |
| R7        | 036-15100-00 | RESISTOR MF 0805 CHIP 10K 5%             |
| R8        | 036-15100-00 | RESISTOR M/F 0805 CHIP 10K 5%            |
| R9        | 036-12220-00 | RESISTOR M/F 0805 CHIP 22E 5%            |
| 1         |              |                                          |
| SW1       | 230-00010-19 | SWITCH & SPST DIP PACKAGE                |
| SK1       | 240-04020-57 | SOCKET 10 WAY 1ROW PCB MTG TOP ENTRY     |
|           | 220-01144-00 | PRINTED CIRCUIT BOARD 1855/856/857 MEMOR |

240-04020-35 SOCKET 28 PIN DIL INTEGRATED CCT LOW PRO FOR IC1

# T700/800 SERIES RSSI PCB PARTS

| REF | IPN          | DESCRIPTION                              |
|-----|--------------|------------------------------------------|
|     |              |                                          |
| C1  | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |
| C2  | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP IN 10% X7R 5 |
| C3  | 015-23330-08 | CAPACITOR CERAMIC 0805 CHIP 330P 10% X7F |
| C4  | 015-25100-08 | CAPACITOR CERAMIC 0605 CHIP 10N 10% X7R  |
| C5  | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |
| C6  | 015-25100-08 | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R  |
| C7  | 015-24470-08 | CAPACITOR CERAMIC 0805 CHIP 4N7 10% X7R  |
| C8  | 015-25100-08 | CAPACITOR CERAMIC 0805 CHIP 10N 10% X7R  |
| C9  | 015-24100-08 | CAPACITOR CERAMIC 0805 CHIP 1N 10% X7R 5 |
|     | 010 21100 00 |                                          |
| D1  | 001-10000-99 | DIODE SMD BAV99 DUAL SWITCH SOT-23 SINGI |
| IC1 | 002-10003-24 | INTEGRATED CCT SMD. 324 QUAD OP AMP SO-1 |
| Q1  | 002-10033-46 | INTEGRATED CCT SMD MC3346D TRANSISTOR    |
| R3  | 036-14100-00 | RESISTOR M/F 0805 CHIP 1K 5%             |
| R4  | 036-14220-00 | RESISTOR M/F 0805 CHIP 2K2 5%            |
| R5  |              | RESISTOR W/F 0805 CHIP 56K 5%            |
| R6  | 036-15390-00 |                                          |
| R7  | 036-15100-00 | RESISTOR M/F 0805 CHIP 10K 5%            |
| 88  |              | RESISTOR M/F 0805 CHIP 10K 5%            |
| 89  |              | RESISTOR M/F 0805 CHIP BODE 5%           |
|     |              |                                          |
| R10 |              | RESISTOR M/F 0805 CHIP 220K 5%           |
| R11 | 036-13470-00 | RESISTOR M/F 0805 CHIP 470E 5%           |
| R12 |              | RESISTOR M/F 0805 CHIP 330K 5%           |
| R13 |              | RESISTOR M/F 0805 CHIP 100K 5%           |
| R14 |              | RESISTOR M/F 0805 CHIP 180K 5%           |
| R15 | 036-15220-00 | RESISTOR M/F 0805 CHIP 22K 5%            |
| R16 | 036-17100-00 | RESISTOR M/F 0805 CHIP 1M 5%             |
| R17 | 036-15330-00 | RESISTOR M/F 0805 CHIP 33K 5%            |
| R18 | 036-14100-00 | RESISTOR M/F 0805 CHIP 1K 5%             |
| R19 |              | RESISTOR M/F 0805 CHIP 10K 5%            |
| R20 |              | RESISTOR M/F 0805 CHIP 10K 5%            |
| R21 | 036-16330-00 |                                          |
| R22 |              | RESISTOR M/F 0805 CHIP 4K7 5%            |
| R23 | 036-15100-00 | RESISTOR M/F 0805 CHIP 10K 5%            |
| R24 | 036-16150-00 | RESISTOR M/F 0805 CHIP 150K 5%           |
| R25 | 036-16180-00 | RESISTOR M/F 0805 CHIP 180K 5%           |
| R26 | 036-15820-00 | RESISTOR M/F 0805 CHIP 82K 5%            |
| R29 | 036-14470-00 | RESISTOR M/F 0805 CHIP 4K7 5%            |
| R30 | 036-15100-00 | RESISTOR M/F 0805 CHIP 10K 5%            |
| R31 | 036-15220-00 | RESISTOR M/F 0805 CHIP 22K 5%            |
| R32 | 036-14470-00 | RESISTOR M/F 0805 CHIP 4K7 5%            |
|     | 220-01138-00 | PRINTED CIRCUIT BOARD T700 RSSI          |
|     | 356-00010-52 | PIN EDGE MTG 0.8MM PCB WAKO              |
|     | 365-00011-38 | LABEL STATIC WARNING YELLOW A4A315       |
|     |              | LABEL WHITE RW1556/2 SPECIAL ADHESIVE    |
|     | 399-00010-86 | BAG STATIC SHIELDING 127X203MM           |
|     | 410-00010-64 | PACKAGING HEADER CARD A3M2392            |

## T885 MECHANICAL & MISCELLANEOUS PARTS

----

------1 - -

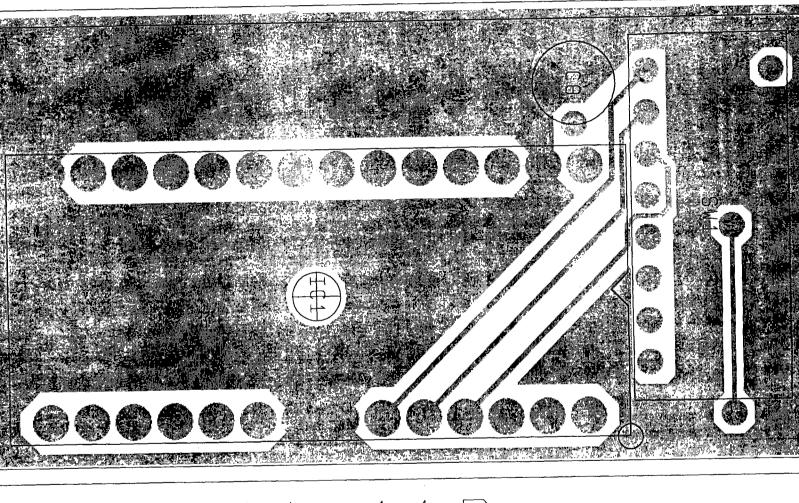
· •

-

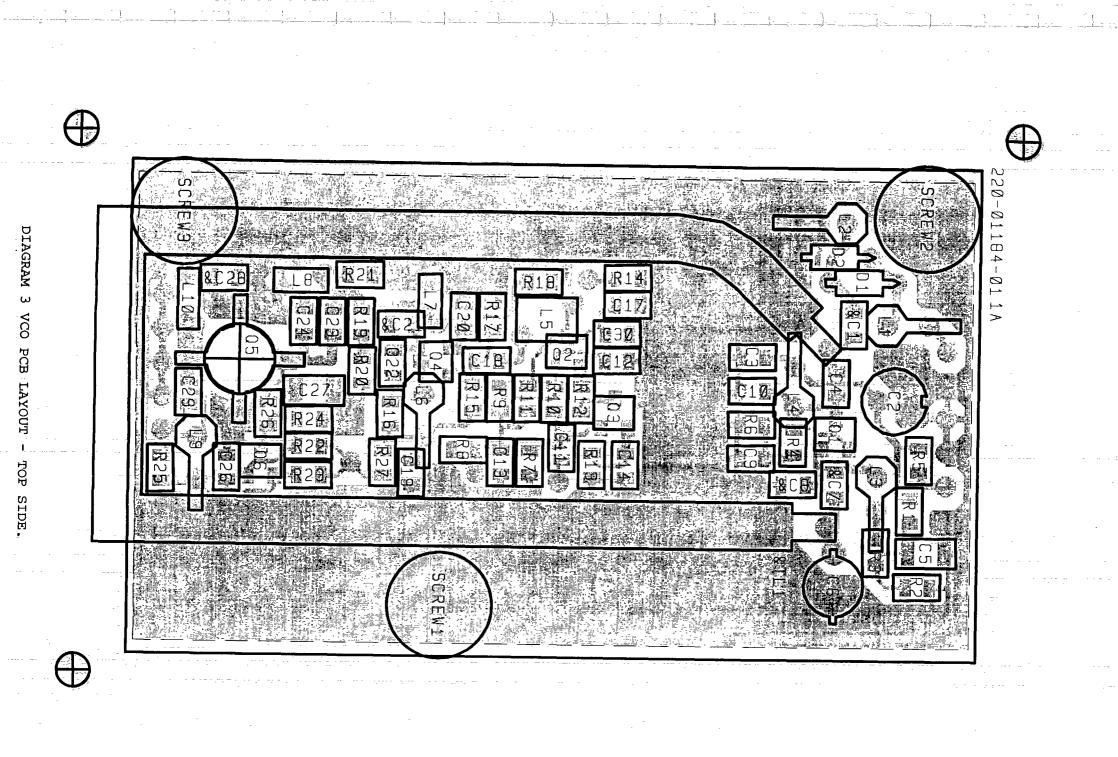
----

~ --

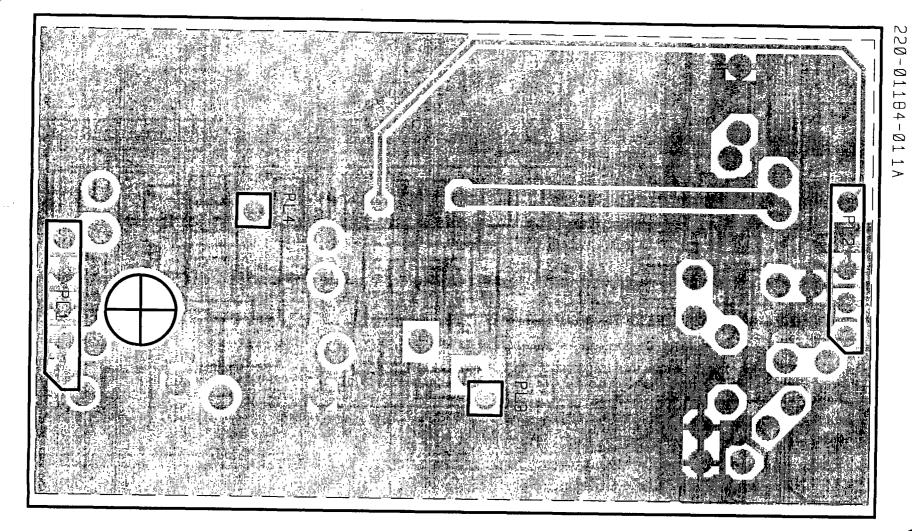
·----


;\_\_\_\_ ; . \_\_\_\_

> · '----r


/ -| !

| IPN          | DESCRIPTION                                                                            |       | IPN          | DESCRIPTION                            |     |   |
|--------------|----------------------------------------------------------------------------------------|-------|--------------|----------------------------------------|-----|---|
| 012-04150-01 | CAPACITOR CERAMIC FEEDTHRU 1N5 LESS LEAD                                               |       | 362-00010-23 | GASKET SILICONE INSULATING TO-220 CLIP |     |   |
|              | D RANGE                                                                                |       | 362-00010-33 | GROMMET LED NTG 3MM LO CURRENT LED     | s   |   |
| 062-00010-13 | CAN 10MM SQ X 11MM SANWA 613 A4M1017<br>FIT OVER COIL T200                             |       | 365-00011-03 | LABEL TEST REPORT INSIDE A4A267        |     |   |
| 065-00010-13 | BEAD FERRITE 7D 1.9"0.9"3.8MM STACK POLE<br>D RANGE                                    |       | 365-00100-03 | LABEL BLANK 10.8X30MM S/A METALISED P  |     |   |
| 066-00010-20 | SLUG BRASS A4M764 T196 HELICAL RESONATOR                                               | !     | 365-00100-20 | LABEL WHITE S/A 28X11MM QUIKSTIK RW71  | 8/4 |   |
| 220-01192-02 | PRINTED CIRCUIT BOARD T885 RX                                                          |       | 400-00020-05 | SLEEVING 1.5MM SILICONE RUBBER         |     |   |
| 230-00010-31 | COVER LEVER FOR TOGGLE SW 230-00010-30                                                 |       | 410-00010-42 | PACKAGING CARTON 60MM FXD EQUIP MOD    |     |   |
| 240-02010-54 | SOCKET 15WAY DRANGE PANEL MTG DS-15SR-BT                                               | ,     | 410-01056-00 | CARTON STOCK 10 PRINTED KIWI REF 1231  | 75  |   |
| 240-02100-06 | SOCKET COAXIAL N TYPE PANEL MTG OPEN TER                                               |       |              |                                        |     |   |
| 240-04020-62 | SOCKET 2 WAY RECEPTACLE SHORTING LINK<br>FOR PL100 PL101 PL102 PL103 PL104 PL105 PL106 |       |              |                                        |     | : |
| 240-04020-65 | SOCKET JACK PIN 1.3MM PCB MTG 64 WAY SIL<br>SJ1 SJ2 SJ3 SJ4 SK300 SK301                |       |              |                                        |     |   |
| 303-11168-00 | CHASSIS HEATSINK PAINTED CMPLT A1M2364 8                                               | 1. a. |              |                                        |     |   |
| 303-23118-00 | COVER A3M2247 D RANGE HOLE T855/7                                                      |       |              |                                        |     |   |
| 303-50074-00 | CLIP A3M2246 SPRING TRANSISTOR CLAMP T85                                               |       |              |                                        |     |   |
| 306-01010-00 | FERRULE A4M948 HANDLE FXD EQUIP                                                        |       |              |                                        |     |   |
| 308-01007-00 | HANDLE A4M949 FXD EQUIP                                                                |       |              |                                        |     |   |
| 308-01048-00 | HOUSING A3M2378 DOUBLET HELICAL RESONATO                                               |       |              |                                        |     |   |
| 311-01015-00 | KNOB SATO K34 AG 15MM & SKIRT 6MM SHAFT                                                |       |              |                                        |     |   |
| 312-01052-00 | LID TOP PAINTED COMPLETE A1M2364 800 SER                                               |       | i.           |                                        |     |   |
| 312-01053-00 | LID BOTTOM PAINTED COMPLETE A1M2364 800                                                |       |              |                                        |     |   |
| 316-06407-01 | PANEL FRONT COMPLETE T885 A3M2208/5                                                    |       |              |                                        |     |   |
| 316-85015-00 | PIN A4M775 LOCATING D RANGE                                                            | ·     |              |                                        |     |   |
| 316-85099-00 | PLATE FLOAT A2M2248 DUAL D RANGE SOCKET                                                |       |              |                                        |     |   |
| 316-85100-00 | PLATE FRONT A2M2249 DUAL D RANGE SOCKET                                                |       |              |                                        |     |   |
| 318-01014-00 | RAIL A2M2214 FOR 800 SERIES FXD EQUIP                                                  |       |              |                                        |     |   |
| 319-01152-00 | SHIELD A3M2250 FEEDTHRU MTG T857<br>D RANGE                                            |       |              |                                        |     |   |
| 345-00040-08 | SCREW M3"12MM PAN POZI ST BZ<br>D RANGE HOLE COVER                                     |       |              |                                        |     |   |
| 345-00040-09 | SCREW M3*6MM CSK POZI TRUNCATED HEAD ST                                                |       |              |                                        |     |   |
| 345-00040-10 | SCREW M3*6MM PAN POZI ST BZ<br>ASSEMBLY OF GUIDE: X 4 RAILS X 4 FLOAT PLATE            |       |              |                                        |     |   |
| 345-00040-20 | SCREW M3*8MM BUTTON SKT HD BLACK ZINC PH                                               |       |              |                                        |     |   |
| 349-00020-32 | SCREW TAPTITE M3X8MM PAN POZI BZ<br>PCB MTG X B 'N' CONNECTOR X 4 HELICAL MTG X 12     |       |              |                                        |     |   |
| 349-00020-43 | SCREW TAPTITE MAX12MM PAN POZI BZ<br>TOP COVER MTG                                     |       |              |                                        |     |   |
| 349-00020-45 | SCREW TAPTITE MAX20MM PAN POZI BZ<br>BOTTOM COVER MTG                                  |       |              |                                        |     |   |
| 350-00016-42 | SPACER 5MM HIGH 8MM X M3 STUD 2.5MM X M3<br>FOR VCO STAND OFF                          |       |              |                                        |     |   |
| 352-00010-08 | NUT M3 COLD FORM HEX ST BZ<br>D RANGE PLUG X 2 COVER X 2 VCO X 2                       |       |              |                                        |     |   |
| 352-00010-29 | NUT M4 NYLOC HEX                                                                       |       |              |                                        |     |   |
| 352-00010-50 | NUT TRIMMER SCREEN 1/4 UNF SPIRE SNO 278                                               |       |              |                                        |     |   |
| 353-00010-10 | WASHER M3 FLAT ST BZ 6.75MM OD A4M1215<br>FOR VCO MTG & FLOAT PLATE                    |       |              |                                        |     |   |
| 353-00010-12 | WASHER M3 SPRING BZ<br>D RANGE PLUG                                                    |       |              |                                        |     |   |
| 353-00010-13 | WASHER M3 SHAKEPROOF INT BZ                                                            |       |              |                                        |     |   |
| 360-00010-40 | BUSH SNAP BLACK HEYCO SB-375-4                                                         |       |              |                                        |     | • |
|              |                                                                                        |       |              |                                        |     |   |


DIAGRAM 1 EPROM PCB LAYOUT 饡 TOP SIDE 011 - 44B $\beta - \beta$ 



Q - Q Q Q 1 1 - 4 4 B







Ĺ

, \*-- -

· . . ]

· · · \_]

 $\oplus$ 

L

# T885 Grid Reference Index

|                |               |                |                |                | 67 Gi Iu          |    |                 |                |                   |                  |                |               |
|----------------|---------------|----------------|----------------|----------------|-------------------|----|-----------------|----------------|-------------------|------------------|----------------|---------------|
| DEVICE         | PCB           | CIRCUIT        | DEVICE         | PCB            | CIRCUIT           |    | DEVICE          | PCB            | CIRCUIT           | DEVICE           | PCB            | CIRCUIT       |
| C1             | 2:J5          | 1-B4           | C220           | 2:R8           | 3-G6              |    | D203            | 2:06           | 3-K7              | PAD105           | 1:E3           | 2-P0          |
| C2             | 2:L4          | 1-85           | C221<br>C222   | 2:06<br>2:R8   | 3-L6<br>3-F8      | 11 | D300            | 2.64           | 3-K6<br>4-G1      | PL105            |                | 2-J7<br>2-J7  |
| C3<br>C4       | 2:J4<br>2:K4  | 1-84<br>1-85   | C301           | 2:V8           | 4-B6              |    |                 | £.14           | 4-G0              | $\{1,\dots,n\}$  |                | 2-J7          |
| C5             | 2:K4          | 1-C4           | C302           | 2:V8           | 4-86              |    | #H1<br>#H2      | 1:W9<br>1:T9   | 4-D7<br>4-H7      | 1                |                | 2~J7<br>2~J8  |
| C6<br>C7       | 2:L4<br>2:M4  | 1-05<br>1-05   | C303<br>C304   | 2:V8<br>2:V9   | 4-C6              |    | #H3             | 1:N9           | 4-L7              | PAD106           | 1:82           | 2-N1          |
| C8             | 2:L5          | 1-D4           | C305           | 2:T11          | 4-E7              |    | INPUT           | 0:B1           | 4-A7              | PL106            | 1:B2           | 2-K8          |
| C9<br>C13      | 2:04<br>1:L5  | 1-A8<br>1-F4   | C306<br>C307   | 2:T11<br>2:T12 | 4-E7<br>4-F8      |    | IC1<br>=iC2     | 1:M4<br>1:R4   | 1-D4<br>1-B8      |                  |                | 2-K8<br>2-K8  |
| C14            | 2:M4          | 1-F4           | C308           | 2:T11          | 4-F7              | •  | 103             | 1:M3           | 1-F3              | PAD107           | 1:82           | 2-N0          |
| C15<br>C16     | 2:L3<br>2:P3  | 1-62<br>1-62   | C309<br>C310   | 2:T10<br>2:S10 | 4-F7<br>4-F9      |    | IC4             | 1:N4           | 1-N2<br>1-K5      | PAD108<br>PAD109 | 1:82<br>1:82   | 2-O1<br>2-O0  |
| C17            | 2:M3          | 1-H3           | C311           | 2:N10          | 4-H9              |    |                 | 4.74           | 1-M3              | PAD110           | 1:E3           | 2-A9          |
| C19<br>C20     | 2:Q3<br>1:P5  | 1-12<br>: 1-J5 | C312<br>C313   | 2:P10<br>2:P11 | 4⊣7<br>4⊣7        |    | IC5             | 1:T4           | 1-18<br>1-D7      | PAD111<br>PAD112 | 1:E8<br>1:B2   | 2-A8<br>2-A5  |
| C21            | 2:M5          | 1-L2           | C314           | 2:P11          | 4-ئ8              |    |                 |                | 1-D7              | PAD113           | 1:D11          | 2-A4          |
| C22<br>C23     | 2:N4<br>1:N4  | 1-K5<br>1-K5   | C315<br>C316   | 2:P11<br>2:N10 | 4-J8<br>- 4-J7    |    |                 |                | 1-E7<br>1-18      | PAD114<br>PAD115 | 1:D11<br>1:E4  | 2-A1<br>2-A1  |
| C24            | 1:M5          | 1-02           | C317           | 2:K10          | 4-M7              |    |                 |                | 1-J8              | PAD116           | 1.C10          | 2-G2          |
| C25<br>C26     | 2:P8<br>1:R4  | 1-L5<br>1-O8   | C318<br>C319   | 2:K10<br>11لـ2 | 4-M6<br>4-M7      |    | 106             | 1:T3           | 1-K8<br>1-H8      | PAD117<br>PAD118 | 1:84<br>1:E2   | 2-03<br>2-A8  |
| C27            | 1:R5          | 1-07           | C320           | 2:H11          | 4-N7              |    | 100             |                | 1 <del>.F</del> 7 | PAD119           | 1:D8           | 2-H9          |
| C28<br>C30     | 2:Q5<br>2:P6  | 1-P7<br>1-P8   | C321<br>C322   | 2:H11<br>2:H11 | 4-N7<br>4-06      |    | IC100           | 1:C12          | 1-F8<br>2-F3      | PAD120<br>PAD121 | 1:B4<br>1:E4   | 2-K8<br>2-A5  |
| C30<br>C31     | 2:L4          | 1-05           | C323           | 2:H12          | 4-07              |    |                 | 1.012          | 2-82              | PAD122           | 1:B1           | 2-J9          |
| C32            | 2:L6          | 1-05           | C324           | 2:H10          | 4-P8<br>4-P8      |    | IC101           | 1:C9           | 2-E1<br>2-P9      | PAD123<br>PL200  | 1:C10<br>1:V4  | 2-G2<br>3-B7  |
| C33<br>C34     | 2:04<br>2:T4  | 1-C7<br>1-C8   | C325<br>C326   | 1:H10<br>2:H11 | 4-P8<br>4-P7      | '  |                 | 1.09           | 2-F7              | FLZO             | 1.44           | 3-B7          |
| C35            | 2:S2          | 1-E9           | C327           | 2:G11          | 4- <del>P</del> 7 |    |                 |                | 2-G7              | · .              |                | 3-88          |
| C36<br>C39     | 1:R3<br>1:R4  | 1-E9<br>1-C8   | &C328<br>C329  | 2:G12<br>2:G11 | 4-A4<br>4-B3      |    | IC102<br>IC103  | 1:B6<br>1:B8   | 2-N7<br>2-M2      |                  |                | 3-87<br>3-86  |
| C40            | 2:T3          | 1-19           | &C330          | 2:F11          | 4-C3              | 1  | IC104           | 1:06           | 2-E0              |                  |                | 3-85          |
| C41<br>C42     | 2:T2<br>2:R3  | 1-H9<br>1-O8   | C331<br>&C332  | 2:G10<br>2:G10 | 4-E3<br>4-E4      |    | 1               |                | 2-D0<br>2-B0      |                  | 1              | 3-85<br>3-89  |
| C100           | 1:D9          | 2-C8           | C333           | 2:G10          | 4-F4              |    | IC201           | 1:T6           | 3-H3 :            |                  |                | 3-B9          |
| &C101<br>-C102 | 2:D9<br>1:D9  | 2-D7<br>2-D8   | C334<br>C335   | 2:G9<br>2:H9   | 4-G3<br>4-F4      |    |                 |                | 3-H1<br>3-P0      |                  | 194 - E        | 3-88<br>3-88  |
| &C103          | 2:D10         | 2-E7           | &C336          | 2:69           | 4-H4              |    | IC202           | 1:S7           | 3-E1              | 1                | 4              | 3-B6          |
| &C104          | 2:D9<br>2:B10 | 2-E7           | &C337<br>&C338 | 2:G9<br>2:G9   | 4-H3<br>4-I3      |    | IC300<br>IC301  | 1:K11<br>1:G6  | 4-L7<br>4-B1      |                  |                | 3-86<br>3-88  |
| C105<br>&C106  | 2:09          | 2-D2<br>2-E7   | &C339          | 2:G9           | 4-13              |    | 10001           | 1.00           | 4-M4              |                  |                | 3-B7          |
| C107           | 2:811         | 2-F1           | C340           | 2:F9           | 4-14              |    | IC302           | 1.1.2          | 4-04<br>4-M1      | O1               | 2:K4           | 1-C4          |
| C108<br>C110   | 2:C9<br>1:D10 | 2-P9<br>2-G5   | C341<br>C342   | 2:F8<br>2:G8   | 4-ј4<br>4-к4      |    | L1              | 1:H3<br>1:K5   | 1-B4              | . 03             | 2:P3           | 1-12          |
| C111           | 2:C9          | 2-H6           | C343           | 2:F8           | 4-L4              |    | L100            | 1:E3           | 2-J2              | 04               | 2:S4           | 1-09          |
| C112<br>C113   | 1.B9<br>2:B8  | 2-18<br>2-1.2  | C344<br>C345   | 2:G8<br>2:G6   | 4-L5<br>4-M4      |    | L301<br>L302    | 1:V8<br>1.V8   | 4-B7<br>4-C7      | Q100<br>Q101     | 2:C10<br>2:D11 | 2-G2<br>2-H4  |
| C114           | 2:C7          | 2-1.5          | C346           | 1:H7           | 4-M5              |    | L303            | 1:V9           | 4-C7              | Q102             | 2:B10          | 2-H2          |
| C115<br>C116   | 2:D6<br>2:B9  | 2-M7<br>2-L3   | C347<br>C348   | 2:G6<br>2:G7   | 4-N5<br>4-O4      |    | L305<br>L308    | 1:T11<br>1:P10 | 4-F7 4-17         | Q103<br>Q104     | 2:C8<br>2:C3   | 2-14<br>2-J0  |
| C117           | 1:C7          | 2-N7           | C349           | 2:H7           | 4-05              |    | L310            | 1:L10          | 4-M6              | Q105             | 2:C7           | 2-M6          |
| C118<br>C119   | 1:C7<br>2:B6  | 2-M2<br>2-O8   | C350<br>C351   | 2:H5<br>2:F7   | 4-P5<br>4-P3      |    | L311<br>L312    | 1:J12<br>1:H11 | 4-M7<br>4-O7      | Q106<br>Q107     | 2:89<br>2:D7   | 2-L2<br>2-L6  |
| C120           | 2.B8          | 2-N4           | C352           | 2:G7           | 4-▲1              |    | L313            | 1:H11          | 4-07              | Q108             | 2:B9           | 2-K2          |
| C121<br>C122   | 2:B6<br>1:A6  | 2-08<br>2-07   | C353<br>C354   | 2:G7<br>2:H6   | 4-B1<br>4-C1      |    | L314<br>L315    | 1:F12<br>1:F11 | 4-83<br>4-C3      | Q109<br>Q200     | 2:C8<br>1:S6   | 2-19<br>3-J1  |
| C123           | 2:88          | 2-N4           | C355           | 2:G4           | 4-00              |    | L316            | 1:F10          | 4-E3              | Q201             | 1;T8           | 3-K2          |
| C124<br>C125   | 1:B7<br>1:C6  | 2-N3<br>2-P8   | C356<br>C357   | 2:H4<br>2:G4   | 4-D2<br>4-E1      |    | L317<br>L318    | 1:H9<br>1:F9   | 4-G4<br>4-13      | Q202<br>Q203     | 2:Q7<br>2:R8   | 3-J6<br>3-H7  |
| C126           | 2:46          | 2-P7           | C358           | 2:G4           | 4-E1              |    | L319 -          | 1:G8           | 4-K5              | G300             | 2:T10          | 4-F7          |
| C127<br>C128   | 1:A8<br>2:B7  | 2-N4           | C359<br>C360   | 2:H4<br>2:F4   | 4-E0<br>4-F1      |    | L320<br>L321    | 1:G5<br>1:H7   | 4-L5<br>4-05      | Q301<br>Q302     | 2:T11<br>2:P11 |               |
| C129           | 2.C11         | 2-N2<br>2-E3   | C361           | 2.F4<br>1:H4   | 4-F1<br>4-G2      |    | L322            | 1:K10          | 4-05<br>4-M9      | Q302<br>Q303     | 2:P10          |               |
| &C130          | 2.D8          | 2-B8           | C362           | 2:F5           | 4-H1              |    | L323            | 1:K9           | 4-N9              | Q304             | 1:H12          |               |
| &C131<br>&C132 | 2:C9<br>2:D8  | 2-H6<br>2-B8   | C363<br>C364   | 2:F5<br>2:F7   | 4-l1<br>4-L1      |    | PAD1<br>PL5     | 1:M4<br>1:P4   | 1-N3<br>1-P0      | Q305<br>Q306     | 2:G10<br>2:F8  | 4-F4<br>4-K4  |
| C133           | 2:D6          | 2-E1           | C365           | 1:F7           | 4-L1              |    | 1               |                | 1-P0              | Q307             | 2:G6           | 4-N4          |
| C134<br>C135   | 1:D2<br>1:D3  | 2-P2<br>2-P2   | C366<br>C367   | 2:F6<br>2:H3   | 4-M1<br>4-N1      |    | ÷ :             |                | 1-P1<br>1-P2      | C308<br>C309     | 2:H4<br>2:G4   | 4-D1<br>4-E1  |
| C136           | 2:D7          | 2-L6           | C368           | 2:K10          | 4-M9              |    |                 |                | 1-P1              | - R1             | 2:L5           | 1-B6          |
| C137<br>C138   | 2:B10<br>2:D5 | 2-K2<br>2-C0   | C369<br>C370   | 2:K10<br>2:L10 | 4-M9<br>4-N9      |    |                 |                | 1-P2<br>1-P3      | 82<br>83         | 2:L3<br>2:K4   | 1-B1<br>1-B4  |
| C139           | 2:C5          | 2-80           | C372           | 2:K9           | 4-N9              |    |                 |                | 1-P2              | R4               | 2:M3           | 1-B1          |
| C140<br>C141   | 2:B9<br>2:C9  | 2-19<br>2-H9   | C373<br>D1     | 2:J9<br>2:O3   | 4-N9<br>1-J2      |    |                 |                | 1-P2<br>1-P1      | R5<br>R6         | 2:K4<br>2:K4   | 1-C5<br>1-C5  |
| C142           | 1:C8          | 2-18           |                |                | 1-J2              |    | PAD100          | 1:E11          | 2-A4              | , R7             | 2:K4           | 1-C4          |
| C200<br>C201   | 2:S6<br>1:R6  | 3-D1<br>3-F1   | D2             | 2:M4           | 1-L3<br>1-K3      |    | PL100           | 1:C11          | 2-H3<br>2-H3      | R8<br>R9         | 2:M3<br>2:K4   | 1-C1<br>1-C5  |
| C202           | 2:R6          | 3-G1           | D100           | 2:C11          | 2-D2              |    | · .             |                | 2-H3              | R10              | 2:K3           | 1-C1          |
| C203<br>C204   | 2:S6<br>1:T7  | 3-13<br>3-K1   | D101           | 2:D11          | 2-D2<br>2-E4      |    | PAD101          | 1:C10<br>1:C9  | 2-A3<br>2-H7      | R11<br>R12       | 2:K4<br>2:K3   | 1-C5<br>1-D1  |
| C205           | 2:17          | 3-K1<br>3-L1   | D101           | 2.011          | 2-E4<br>2-E4      |    | PL101           | 1.08           | 2-H6              | R13              | 2:L3           | 1-D1          |
| C206           | 2:17          | 3-L1           | D102           | 1:B10          | 2-H2              |    | DI 100          |                | 2-H7              | - R14 1          | 2:L4           | 1-D6 :        |
| C207<br>C210   | 1:R7<br>2:R8  | 3-M6<br>3-G6   | D103           | 2:810          | 2-12<br>2-H2      |    | PL102           | 1:D2           | 2-K0<br>2-K1      | R15<br>R16       | 2:L3<br>2:Q5   | 1-D1<br>1-B9  |
| C211           | 1:Q8          | 3-G6           | D104           | 2:D8           | 2-14              |    |                 |                | 2-K1              | R20              | 2:14           | 1-G5          |
| C212<br>C213   | 1:R6<br>2:Q7  | 3-K5<br>3-16   | D105           | 1:B10          | 2-15<br>2-J1      |    | PAD103<br>PL103 | 1:B3<br>1:D8   | 2-K0<br>2-B9      | R21<br>R22       | 2:M3<br>2:L3   | 1-H3<br>1-H4  |
| C214           | 1:R8          | 3-H6           | D106           | 1:E2           | 2-K1              |    |                 |                | 2-B8              | R23              | 2:M4           | 1-14          |
| C215<br>C216   | 1:R8<br>2:S6  | 3-E8<br>3-H1   | D107<br>D108   | 1:D2<br>1:D3   | 2-КО<br>2-КО      |    | PAD104          | 1:E3           | 2-B8<br>2-P1      | R24<br>R25       | 2:M4<br>2:M4   | 1-13<br>1-J3  |
| C217           | 2:S6          | 3-12           | D200           | 2:18           | 3-J3              |    | PL104           | 1:C12          | 2-C1              | R26              | 2:P3           | 1-12          |
| C218<br>C219   | 2:T8<br>2:R7  | 3-J3<br>3-M6   | D201           | 1:U6           | 3~J3<br>3-C7      |    | ÷ .             |                | 2-C1<br>2-C2      | R27<br>R28       | 2:P3<br>2:M4   | 1-12<br>1-144 |
|                |               |                |                |                | 0.01              |    | 1               |                |                   |                  |                | •             |
|                |               | 1              |                |                |                   |    |                 |                |                   | 100 C            |                |               |

1

# T885 Grid Reference Index

. .

ł

ь Ì

-1

: | :\_\_\_

| DEVICE         | РСВ            | CIRCUIT               | DEVICE                 | РСВ            | CIRCUIT      | DEVICE             | PCB           | CIRCUIT      |  |
|----------------|----------------|-----------------------|------------------------|----------------|--------------|--------------------|---------------|--------------|--|
|                |                |                       | R200                   | 2:17           | 3-D2         | <br>R379           | 1:F3          | 4-P0         |  |
| R29            | 2:M4<br>2:N4   | 1-L3<br>1-I5          | R201                   | 2:56           | 3-02<br>3-G1 | R380               | 2:T10         | 4-G9         |  |
| R30<br>R31     | 2:P5           | 1-J6                  | R203                   | 2:18           | 3-13         | R381               | 2:N10         | 4-119        |  |
| R32            | 2:N5           | 1-1.4                 | R204                   | 1:18           | 3-12         | SK1                | 1:K4          | 1-A1         |  |
| R33            | 2:N4           | 1-12                  | R205                   | 1: <b>T8</b>   | 3~J3         |                    |               | 1-A3         |  |
| R34            | 2:N4           | 1-K5                  | R206                   | 2:T6           | 3-K1         |                    |               | 1-A3         |  |
| R35            | 2:M5           | 1-N2                  | R207                   | 2:T6           | 3-K0         |                    |               | 1-A3         |  |
| R36            | 2:P7           | 1-1.5                 | R208                   | 1:T7           | 3-K3         |                    |               | 1-A2<br>1-A2 |  |
| R37            | 2:R4           | 1-08                  | R209                   | 2:R6           | 3-L7<br>3-D2 |                    |               | 1-A2         |  |
| R38<br>R39     | 2:54<br>2:54   | 1-C7<br>1-D8          | R210<br>R212           | 2:17<br>2:08   | 3-G8         |                    |               | 1-42         |  |
| R40            | 2:12           | 1-E9                  | R213                   | 2:R7           | 3-16         |                    |               | 1-A1         |  |
| R41            | 2:L4           | 1-85                  | R214                   | 2:R7           | 3-15         |                    |               | 1-41         |  |
| R42            | 2:L4           | 1-D6                  | R215                   | 2:R7           | 3-H5         | SJ1                | 1:M8          | 1-44         |  |
| R43            | 2:M8           | 1-A4                  | R216                   | · 2:S7         | 3-E0         | SJ2                | 1:L7          | 1-P5<br>2-A6 |  |
| R44            | 2:J7           | 1-04<br>1-04          | R217<br>RV <b>30</b> 0 | 2:S7<br>1:H5   | 3-F1<br>4-E0 | SW100<br>SJ3-1     | 1:85<br>1:P7  | 2-A0<br>1-P5 |  |
| R45<br>R46     | 7لۃ2<br>2:K7   | 1-04                  | RV301                  | 1:G3           | 4-01         | 5.13-2             | 1:P7          | 1-P7         |  |
| R47            | 2:05           | 1-C9                  | R301                   | 2:18           | 4-46         | 6.13-3             | 1:P7          | 1-P6         |  |
| R48            | 2:R5           | 1-C8                  | R302                   | 2:T11          | 4-E8         | SJ3-4              | 1:P7          | 1-P6         |  |
| R49            | 2:T3           | 1-19                  | R303                   | 2:T11          | 4-E7         | SJ3-5              | 1:P7          | 1-P9         |  |
| R50            | 2:S3           | 1-G7                  | R304                   | 2:T11          | 4-E7         | 5.14-1<br>5.14-2   | 1:K8<br>1:K7  | 1-P4<br>1-P4 |  |
| RL100          | 1:D2           | 2-J1<br>2 <b>-M</b> 1 | R305<br>R306           | 2:810<br>2:T11 | 4-F9<br>4-F8 | SJ4-3              | 1:K7          | 1-P3         |  |
|                |                | 2-10                  | R307                   | 2:T11          | 4-F7         | 6,4-4              | 1:K7          | 1-P3         |  |
| RV100.         | 1:A11          | 2-A2                  | R308                   | 2:510          | 4-G7         | SJ4-5              | 1:K7          | 1-P4         |  |
| R100           | 2:B11          | 2-A3                  | R309                   | 2:S10          | 4-G7         | SK300-1            | 1:F7          | 4-L0         |  |
| RV101          | 1:D10          | 2-F5                  | R310                   | 2:S10          | 4-G7         | SK300-2            | 1:F7          | 4-L0         |  |
| R101           | 2:A11          | 2-A2                  | R311                   | 2:P11          | 4-H8         | SK300-3<br>SK301-1 | 1:F6          | 4-K0<br>4-00 |  |
| R102           | 2:C11<br>1:A9  | 2-B1<br>2-J3          | R312<br>R313           | 2:P11<br>2:P10 | 4-H8<br>4-17 | SK301-1            | 1:F4<br>1:F4  | 4-P0         |  |
| RV102<br>RV103 | 1:87           | 2-17                  | R314                   | 2:N10          | 4-19         | SK301-3            | 1:F4          | 4-P0         |  |
| R103           | 2:B11          | 2-B2                  | R315                   | 2:P11          | 4-18         | SK301-4            | 1:F3          | 4-00         |  |
| R104           | 2:D9           | 2-C9                  | R316                   | 2:P11          | 4∹J7         | TP11               | 212لن2        | 4-N7         |  |
| RV104          | 1:D4           | 2-00                  | R317                   | 2:N11          | 4-J7         | TP12               | 2:G12         | 4-64         |  |
| R105           | 2:D9           | 2-C8                  | R318<br>R319           | 2:N10<br>2:N10 | 4-K7<br>4-K7 | TP13<br>TP14       | 2:G10<br>2:G6 | 4-E4<br>4-L4 |  |
| R106<br>&R107  | 2:C12<br>2:D9  | 2-C2<br>2-D8          | R320                   | 2:K10          | 4-L8         | TP15               | 2:F7          | 4-P4         |  |
| R108           | 2:D9           | 2-08                  | R321                   | 2:K10          | 4-L8         | TP16               | 2:F5          | 4-12         |  |
| &R109          | 2:D10          | 2-D8                  | R322                   | 2:K11          | 4-L8         | T100               | 1:C4          | 2-02         |  |
| R110           | 2:C11          | 2-D2                  | R323                   | 2:K10          | 4-M7         | T200               | 1:R7          | 3-J7         |  |
| R111           | 2:C11          | 2-D2                  | R324                   | 2:H11          | 4-06         | T200CAN<br>X300    | 1:R7<br>1:H5  | 3~J8<br>4-L5 |  |
| &R112<br>R113  | 2:D10<br>2:B11 | 2-E8<br>2-E2          | R325<br>R326           | 2:H11<br>2:H10 | 4-06<br>4-08 | &XF300A            | 1:G11         | 4-C3         |  |
| R114           | 2:C11          | 2-E2<br>2-F1          | R327                   | 2:H11          | 4-P7         | &XF300B            | 1:G11         | 4-03         |  |
| R115           | 2:C9           | 2 G6                  | R328                   | 2:G12          | 4-A4         | &XF301             | 1:G9          | 4-114        |  |
| R116           | 2:D11          | 2-F4                  | R329                   | 2:G10          | 4-F3         | &XF302             | 1:H6          | 4-N4         |  |
| R117           | 2:B11          | 2-F2                  | R330                   | 2:G10          | 4-F3         |                    |               |              |  |
| R119<br>R120   | 2:C11<br>.2:D9 | 2-F2<br>2-F8          | R331<br>R332           | 2:H9<br>2:G9   | 4-G5<br>4-G4 |                    |               |              |  |
| R120           | 2:D10          | 2-F5                  | R333                   | 2:H9           | 4-G4         |                    |               |              |  |
| &R122          | 2:C9           | 2-G7                  | R334                   | 2:F9           | 4-13         |                    |               |              |  |
| R123           | 2:D11          | 2-G4                  | R335                   | 2:F8           | 4~J3         |                    |               |              |  |
| R124           | 2:B10          | 2-G3                  | R336                   | 2:F8           | 4~J5         |                    |               |              |  |
| R125           | 2:D11          | 2-65                  | R337<br>R338           | 2:F8<br>2:G8   | 4~J4<br>4-K3 |                    |               |              |  |
| &R126<br>&R127 | 2:C9<br>2:C9   | 2-H7<br>2-H7          | R339                   | 1:G9           | 4-K3         |                    |               |              |  |
| R128           | 2:03           | 2-H1                  | R340                   | 2:G8           | 4-L3         |                    |               |              |  |
| R129           | 2.C3           | 2-H0                  | R341                   | 2:G8           | 4-K5         |                    |               |              |  |
| R130           | 2:B10          | 2-14                  | R342                   | 2:G8           | 4-L5         |                    |               |              |  |
| R131           | 2:89           | 2-17                  | R343                   | 2:H5           | 4-M5         |                    |               |              |  |
| R132<br>R133   | 2:89<br>2:A9   | 2-12<br>2-J1          | R344<br>R345           | 2:G6<br>2:G7   | 4-M3<br>4-O5 |                    |               |              |  |
| R134           | 2:89           | 2-13                  | &R346                  | 2:H7           | 4-00<br>4-P5 |                    |               |              |  |
| R135           | 2:B9           | 2-K3                  | R347                   | 2:F7           | 4-P4         |                    |               |              |  |
| R136           | 2:B9           | 2-L3                  | R348                   | 2:H6           | 4-P5         |                    |               |              |  |
| R137           | 2.B7           | 2-L7                  | R349                   | 2:G7           | <b>4-A</b> 2 |                    |               |              |  |
| R138           | 2:C8           | 2-L4                  | R350                   | 2:G7           | 4-A1         |                    |               |              |  |
| R139<br>R140   | 2:C8<br>2:D7   | 2-L3<br>2-L7          | R351<br>R352           | 2:G7<br>2:F7   | 4-B1<br>4-B1 |                    |               |              |  |
| R140<br>R141   | 2:D7           | 2-L7<br>2-M7          | R353                   | 2:H5           | 4-C1         |                    |               |              |  |
| R142           | 2:06           | 2-M7                  | R354                   | 2:G5           | 4-D0         |                    |               |              |  |
| R143           | 2:C8           | 2-M3                  | R355                   | 2:H4           | 4-D2         |                    |               |              |  |
| R144           | 2:A6           | 2-P6                  | R356                   | 2:G4           | 4-D1         |                    |               |              |  |
| R145           | 2:B6           | 2-N2                  | R357                   | 2:H4           | 4-D0         |                    |               |              |  |
| R146<br>R147   | 2:A6<br>2:B4   | 2-P7<br>2-03          | R358<br>R359           | 2:H4<br>2:G4   | 4-D1<br>4-E1 |                    |               |              |  |
| R148           | 2:B4           | 2-03                  | R360                   | 2:G4           | 4-E1         |                    |               |              |  |
| R149           | 2:C11          |                       | R361                   | 2:G4           | 4-E2         |                    |               |              |  |
| R150           | 2:B10          |                       | R362                   | 2:G5           | 4-F1         |                    |               |              |  |
| R151           | 2:D8           | 2-B8                  | R363                   | 2:F4           | 4-F0         |                    |               |              |  |
| &R152<br>R153  | 2:E9<br>2:C8   | 2-87<br>2-13          | R364<br>R365           | 2:F4<br>2:G5   | 4-G2<br>4-G1 |                    |               |              |  |
| R153           | 2:08<br>2:D6   | 2-13<br>2-C1          | R366                   | 2:G5           | 4-G1         |                    |               |              |  |
| R154           | 2:D6<br>2:D5   | 2-01                  | R367                   | 2:F5           | 4-H1         |                    |               |              |  |
| R156           | 2:D5           | 2-00                  | R368                   | 2.G6           | 4-K2         |                    |               |              |  |
| R157           | 2:D5           | 2-C1                  | R369                   | 1:F6           | 4-K1         |                    |               |              |  |
| R158           | 2:D7           | 2-K6                  | R370                   | 2:F6           | 4-K1         |                    |               |              |  |
| R159<br>R160   | 2:C10<br>2:C10 |                       | R371<br>R372           | 2:G6<br>2:F7   | 4-L2<br>4-M1 |                    |               |              |  |
| R161           | 2:010<br>2:D4  | 2-A0                  | R373                   | 2:G3           | 4-M2         |                    |               |              |  |
| R162           | 2:09           | 2-119                 | R374                   | 2:G3           | 4-N1         |                    |               |              |  |
| R163           | 2:C9           | 2-18                  | R375                   | 2.G6           | 4-N2         |                    |               |              |  |
| R164           | 2:08           | 2-18                  | R376                   | 2:G3           | 4-01         |                    |               |              |  |
| R165           | 2:D5           | 2-A1                  | R378                   | 2:F3           | 4-P0         |                    |               |              |  |
|                |                |                       |                        |                |              |                    |               |              |  |

2

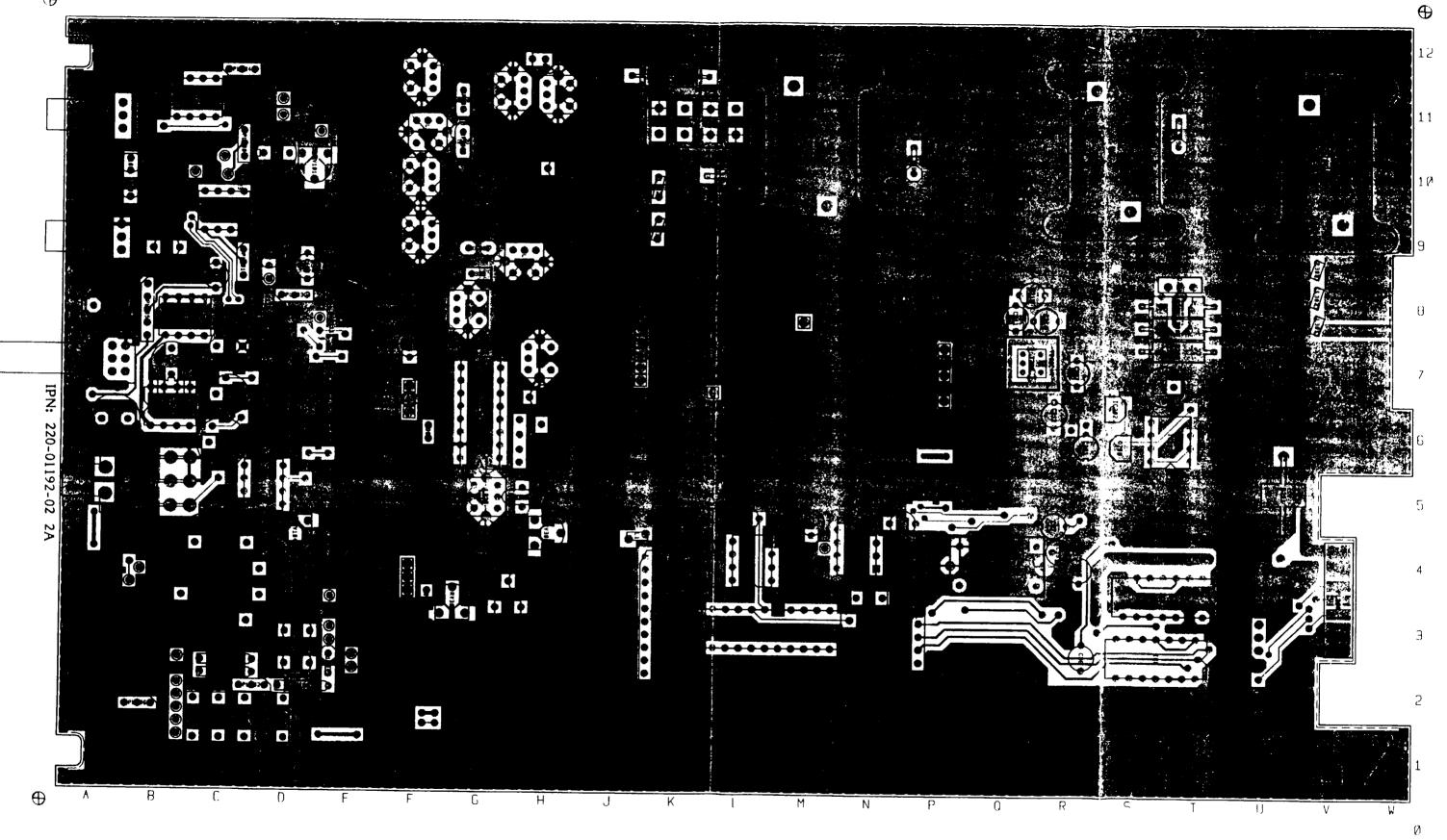
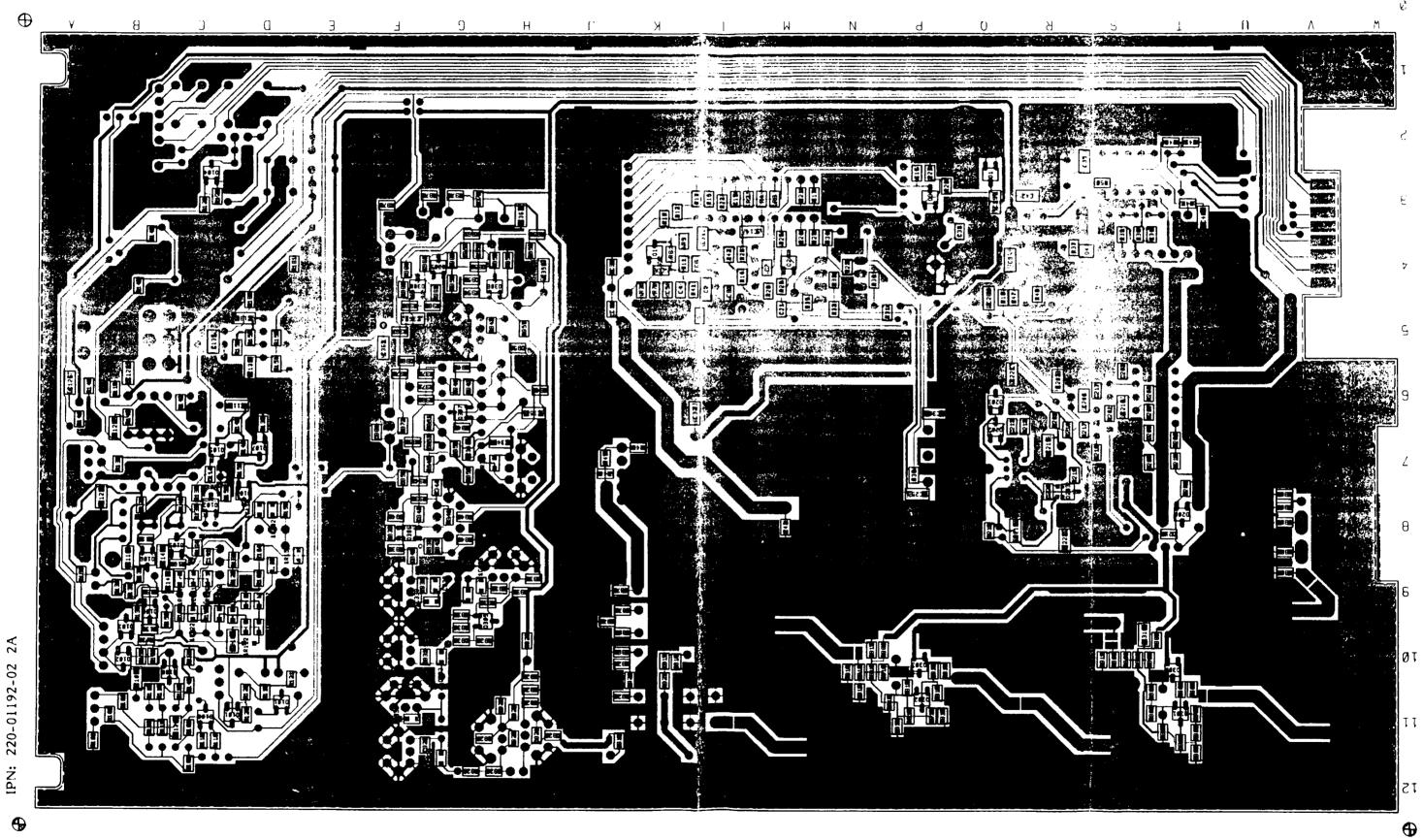
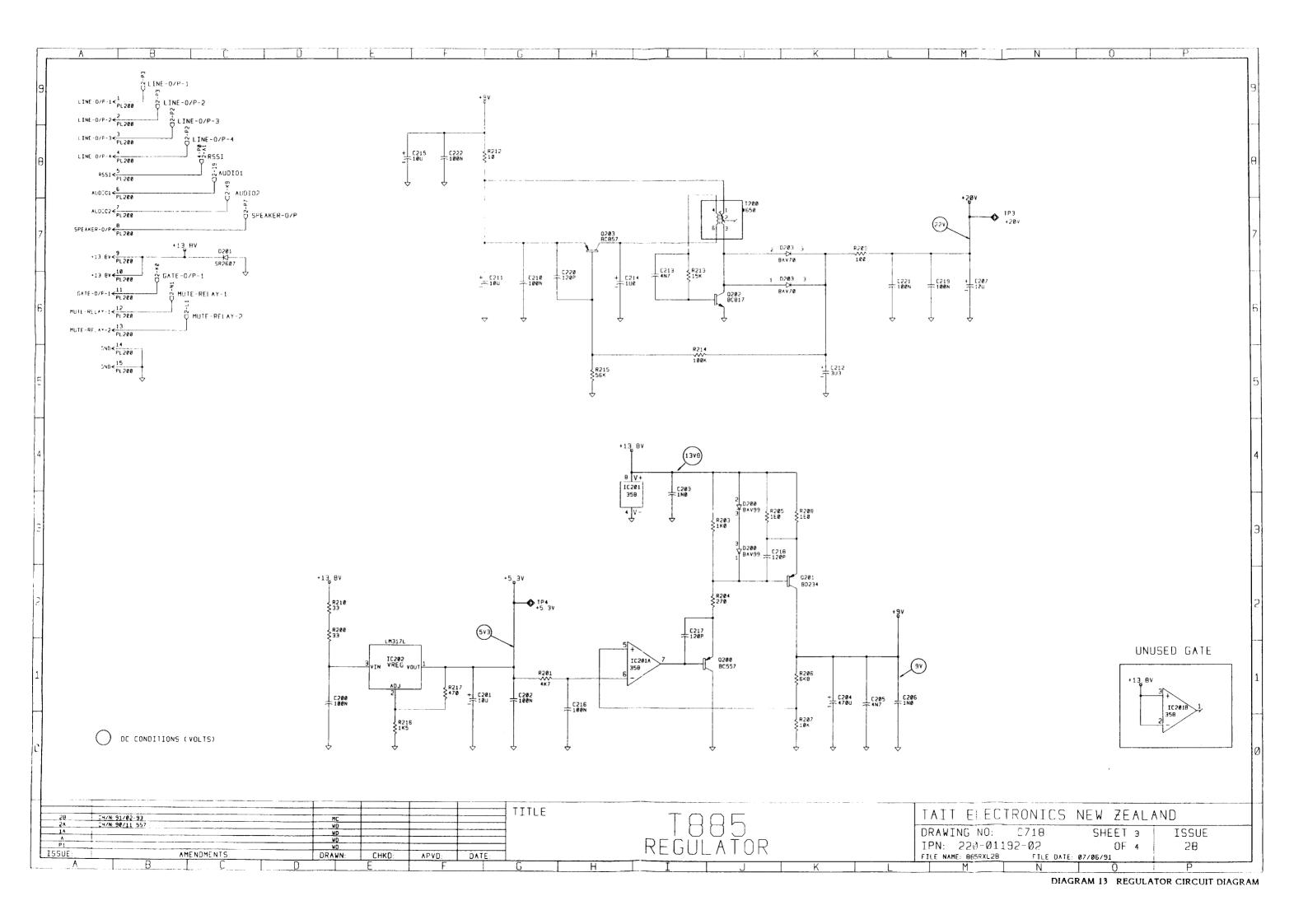




DIAGRAM 5 : T885 FOR LAYOUT - TOP SIDE.

 $\oplus$ 


DIAGRAM 5 T885 PCB LAYOUT - TOP SIDE

X



⊕

Х



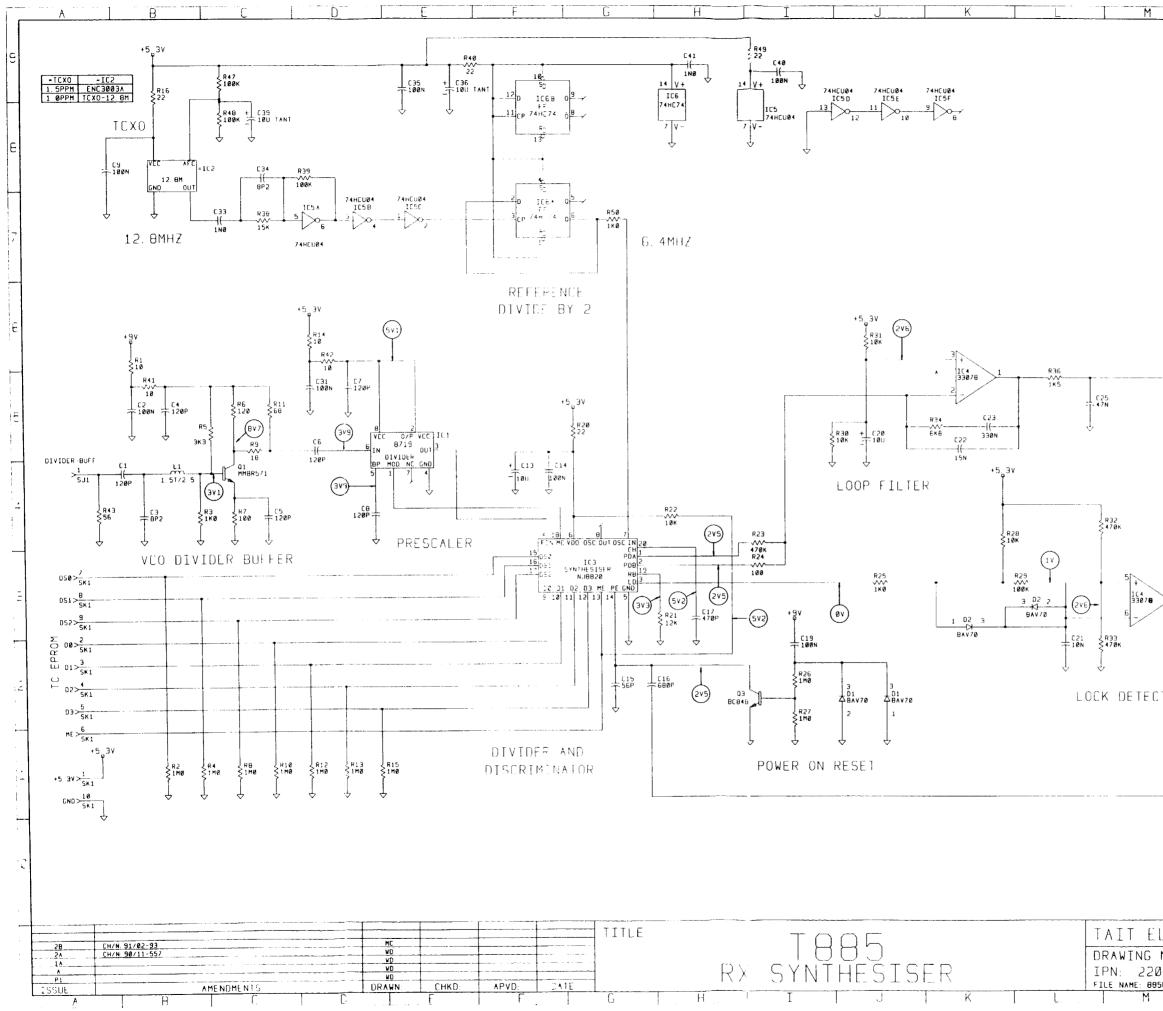



DIAGRAM 14 SYNTHESISER CIRCUIT DIAGRAM

|                    | 5                                                                                                                                    | c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R37                | SJ3-5 VC0-SUPPLY                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 1 C 30<br>1 T 100N                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Ą                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| + [27<br>100 * ANT | 180N                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ą                  | Ŷ                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | SJ3-2 <gnd< td=""><td>-</td></gnd<>                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (3·16V)            | S.13-4                                                                                                                               | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | 1<br>5.13-1 < VED CONTRO:                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | <u>1</u><br>SJ2≺+9v                                                                                                                  | С<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R45                | 5 VL0-07F                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    |                                                                                                                                      | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | 5 J4 2 - GND<br>5 J4 2 - GND<br>5 J4 - 3 - GND                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | ↓<br>5 <del>j4 - 4</del>                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | PL5≻GND                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | PL5 GND                                                                                                                              | ,<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | PL5 GND                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7                  | $\diamondsuit$                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | 9<br>₽L5>₽E                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    |                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | rtu                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V ZEALAN           | ND                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HEET 1             | ISSUE<br>2B                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | $\begin{array}{c} R37 \\ R37 \\ 1K0 \\ + \\ C26 \\ - \\ 100 \\ + \\ - \\ - \\ 100 \\ + \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ | $\begin{array}{c} R32 \\ 1 \times 0 \\ 1$ |

<u>N</u> <u>P</u>

- \_\_\_\_

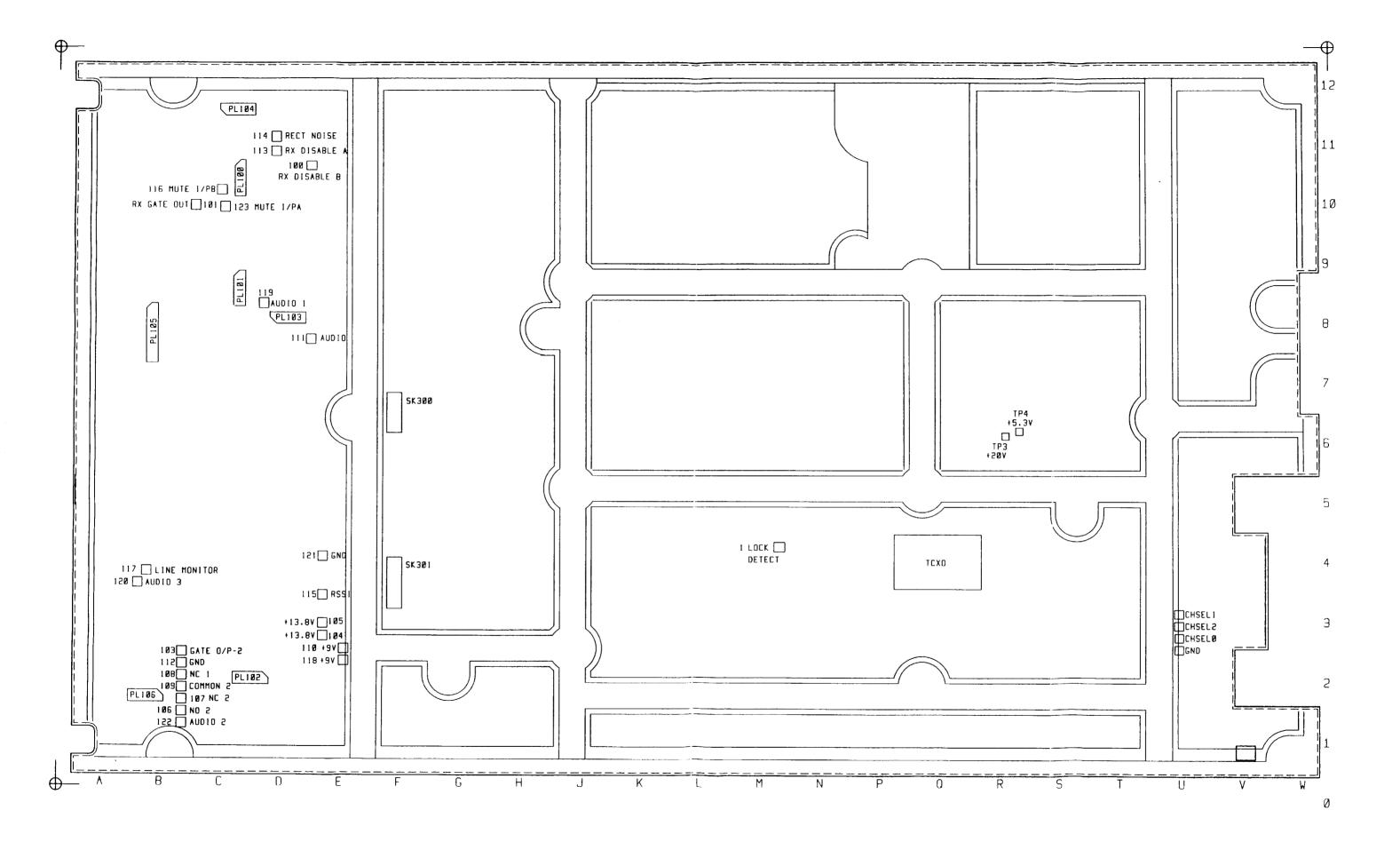
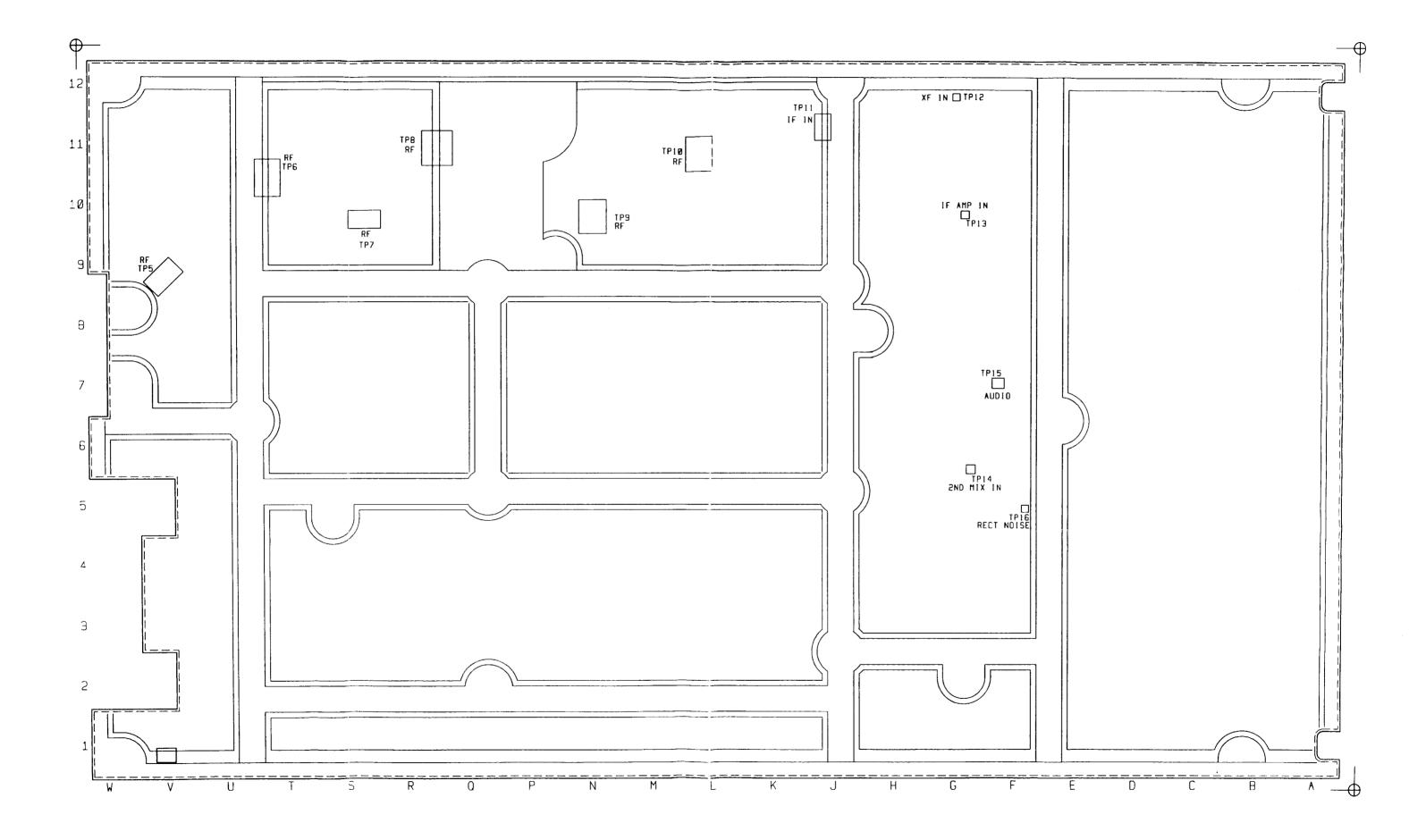
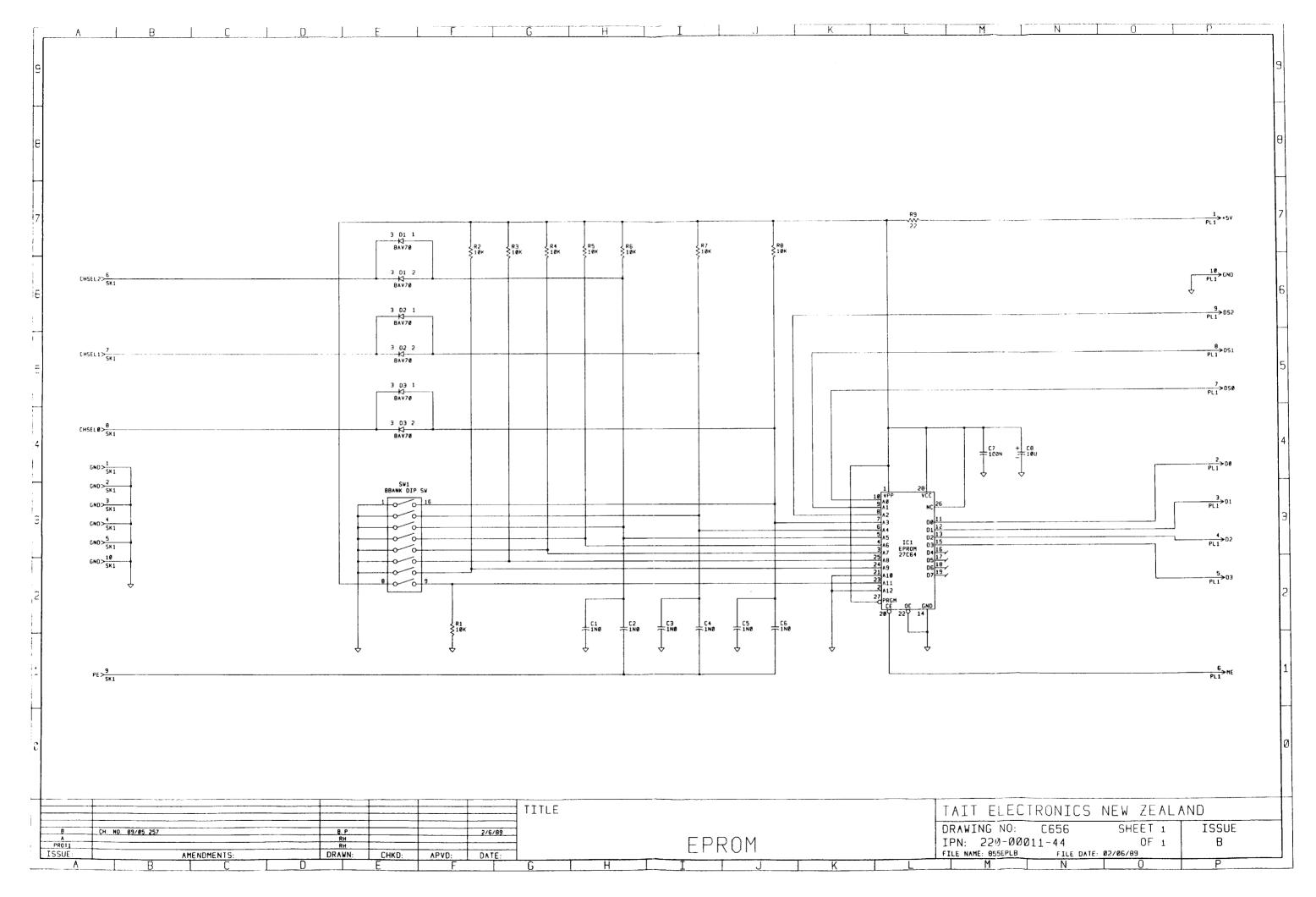
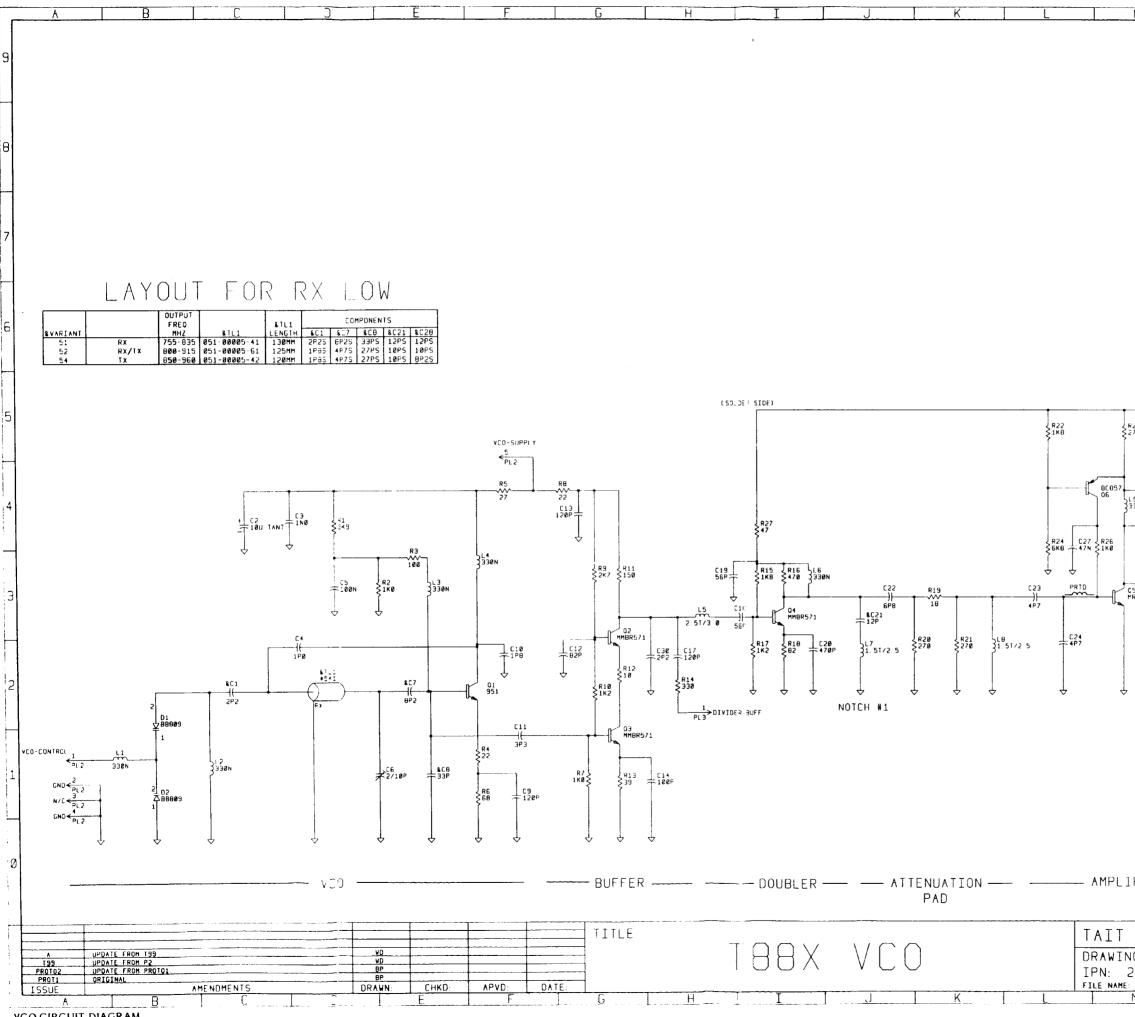
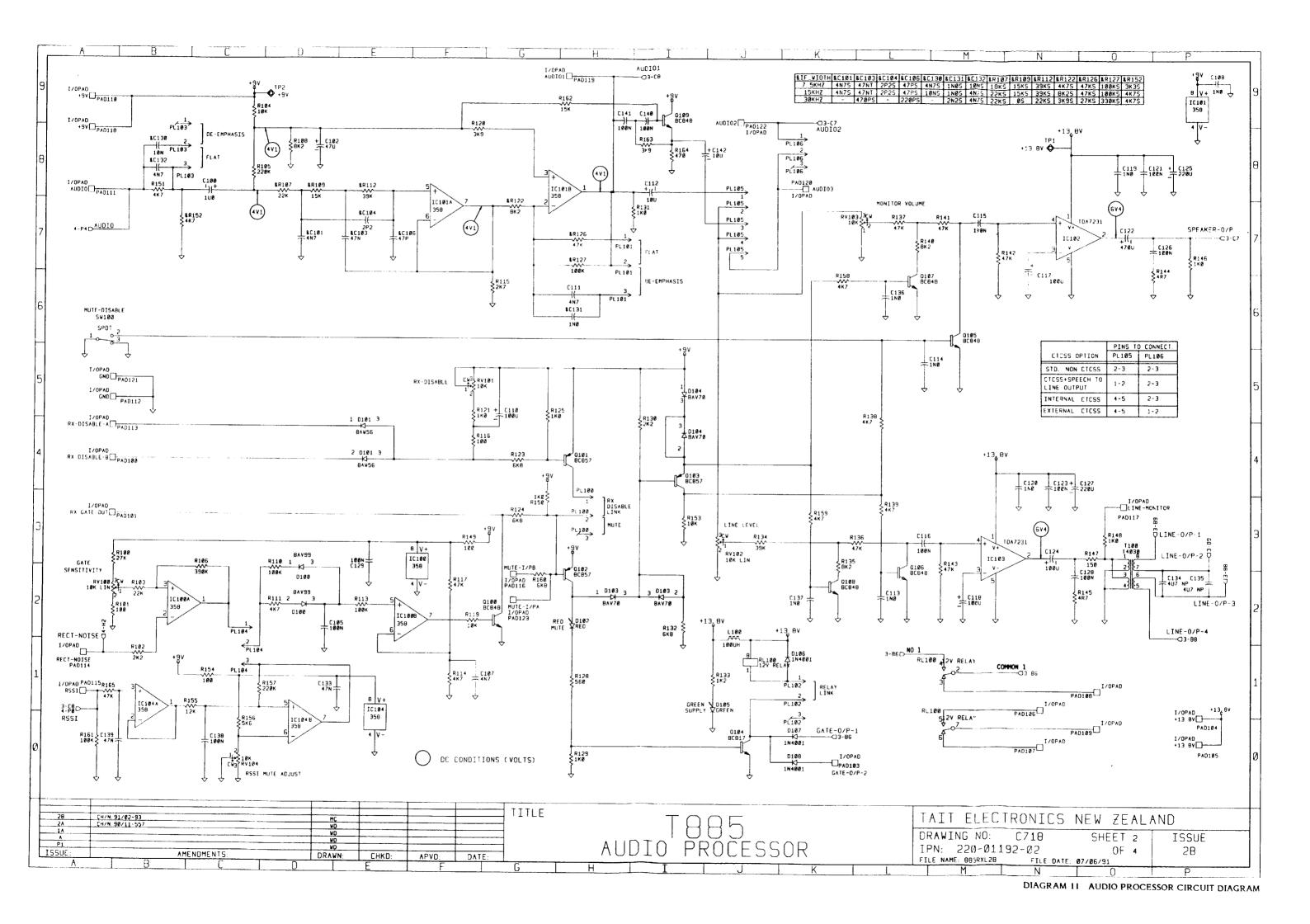






DIAGRAM 7 - T885 TESTPOINTS AND OPTIONS - TOP SIDE.

T885 TEST POINTS/OPTIONS - TOP SIDE








VCO CIRCUIT DIAGRAM

| 1- N 0. P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | · |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _ |
| 1<br>▶+9V-1X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| RN 5478 C26<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 |
| C29 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Э |
| $\begin{array}{c ccccc} 5/1 \\ L18 \\ 1 & 51/3 & 8 \end{array} \xrightarrow{P L 1}{} & 500 \\ \hline & & 2 \\ 1 & 51/3 & 8 \end{array} \xrightarrow{P L 1}{} & 500 \\ \hline & & & 2 \\ 1 & 2P \\ \hline & & & P \\ 1 & 2P \end{array} \xrightarrow{P L 1}{} & 500 \\ \hline & & & & P \\ \hline & & & & & & P \\ \hline & & & & & & P \\ \hline & & & & & & P \\ \hline & & & & & & & P \\ \hline & & & & & & & P \\ \hline & & & & & & & & P \\ \hline & & & & & & & & & P \\ \hline & & & & & & & & & & P \\ \hline & & & & & & & & & & \\ \hline & & & & & &$ |   |
| NOTCH #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | г |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | a |
| IER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ø |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |
| ELECTRONICS NEW ZEALAND<br>NO: C712 SHEET 1 ISSUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |
| 20-01184-01 OF 1 A<br>3880VCLA FILE DATE: 14/5/90<br>N 0 P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |



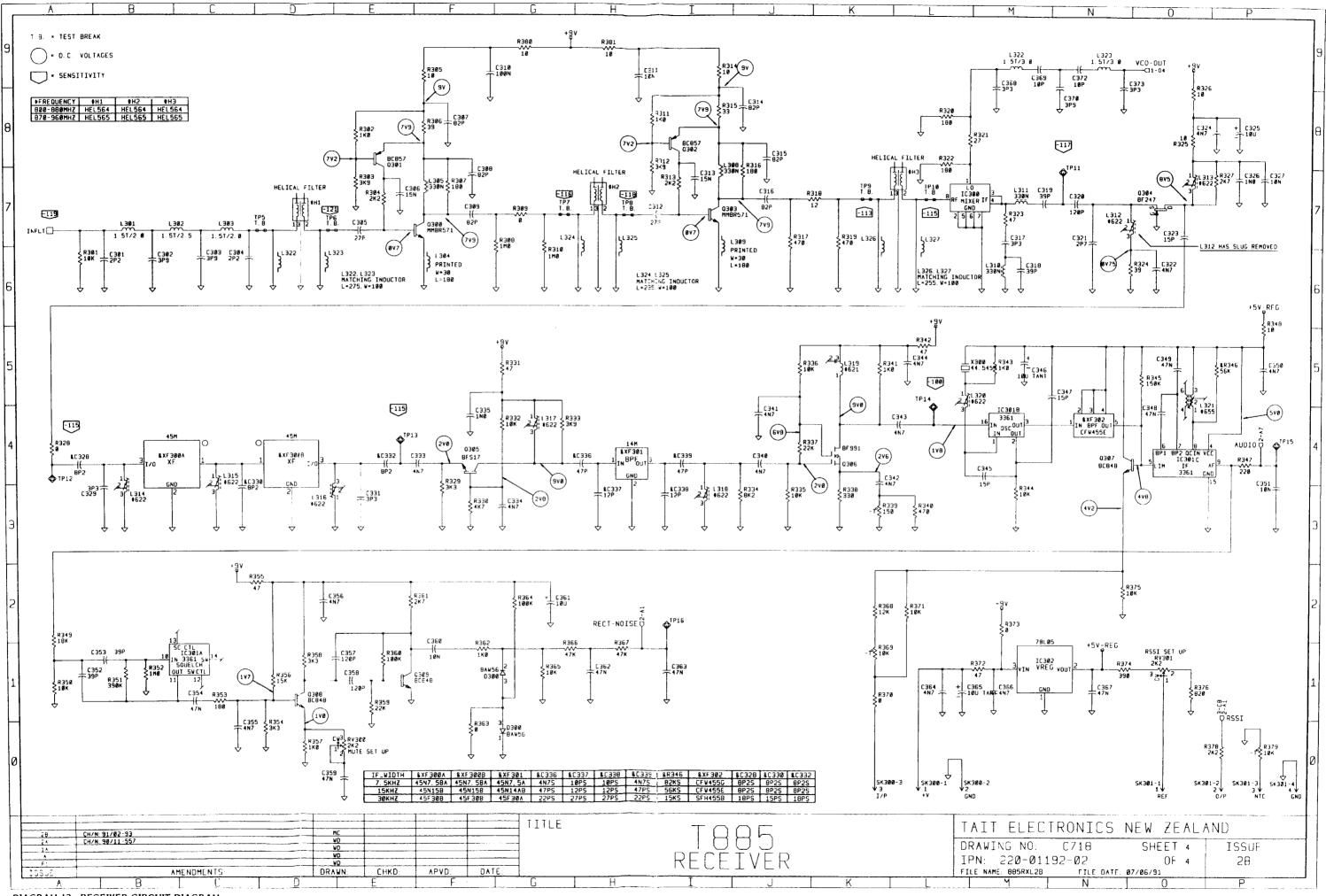
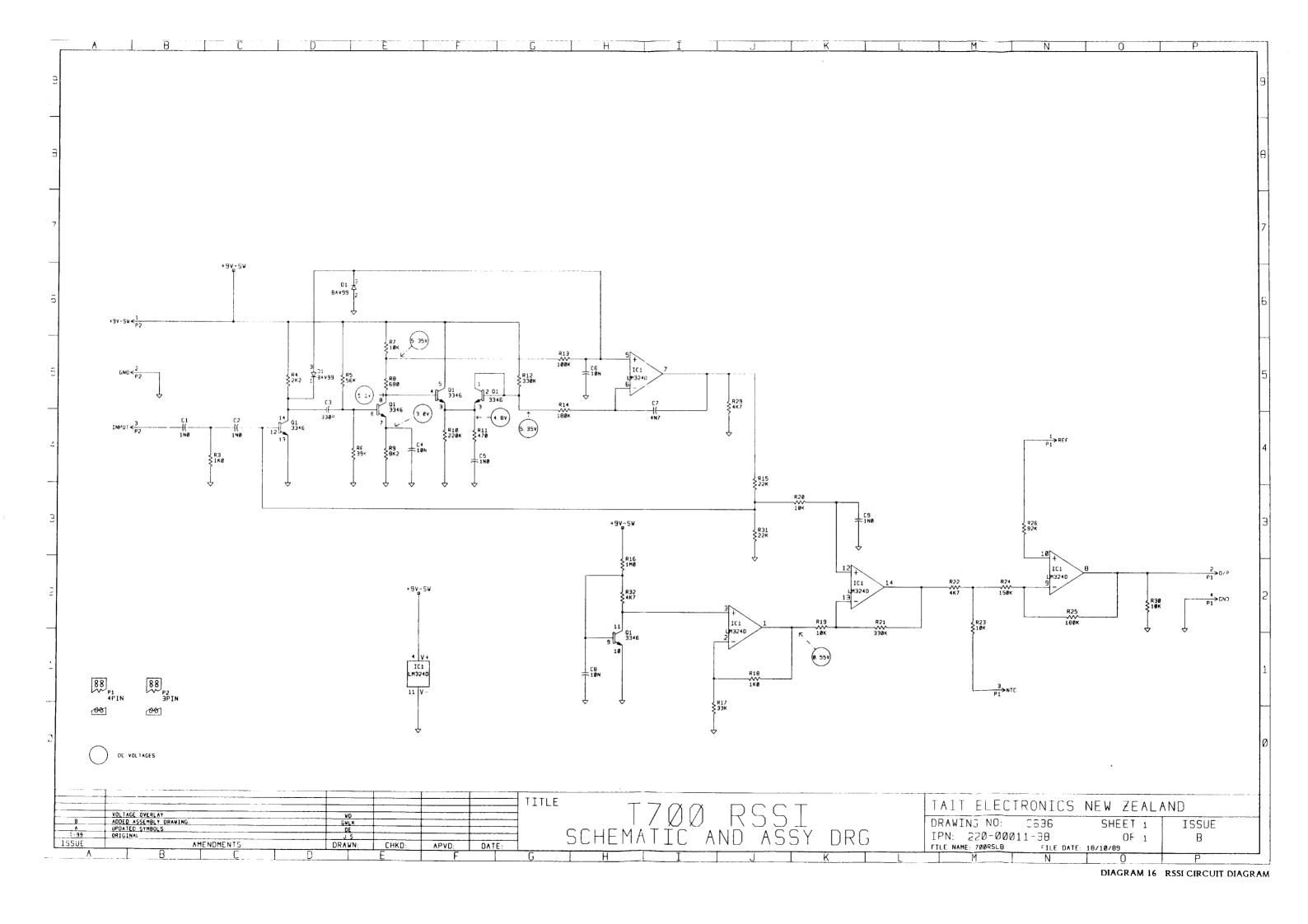




DIAGRAM 12 RECEIVER CIRCUIT DIAGRAM



DIAGRAM 15 RSSI PCB LAYOUT - BOTTOM SIDE

